
RD-RI52 242 DESIGN AND SPECIFICATION OF A LOCAL AREA NETWORK 1/3
ARCHITECTURE FOR USE lN..(U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. L R MAKI

UNCLRSSFIED SEP 84 RFIT/GCS/ENG/84S-3 F/G 9/5 NL

mmahmmmmmm

I1.0

112.2

11111 I .11111I2
t liii1.8

MICRO(COFPy REL I11ION ff1, CHART

REPRODUCED AT GOVERNMENT EXPENSE

.

D0

DESIGN AND SPECIFICATION

OF A LOCAL AREA NETWORK ARCHITECTURE

FOR USE LN REAL-TIME FLIGHT SIMULATION

THESIS

Luke R. Maki
GS-12

AFIT/GCS/ENG/ 84S-3

_. ,..DTIC
DOIStIUTON STATEMENT AE ECTE

ALpproved ka public 319a" 98

Disuibution Unlimited 4
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
*I

Wright-Patterson Air Force Base, Ohio

S785
03 13 112

. AFITGCSlEKG/ 845'%

0

DESIGN AND SPECIFICATION

OF A LOCAL AREA NETWORK ARCH1ITECTURE
FOR USE IN REAL-TIME FLIGHT SIMULATION

THES IS

Luke R. Maki
GS-12

AFIT/GCSIENGI 84S-3
0

0

Approved for public release; distribution unlimited C1C

EII E- TE

. . APR 9 1985

*

4 AFIT/GCS/ENG/ 84S-3

DESIGN AN'D SPECIFICATION OF A LOCAL AREA NETWORK ARCHITECTURE

FOR USE IN REAL-TINE FLIGHT SIMULATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

I Master of Science in Computer Systems

Luke R. Maki, B.S.

GS-12

September 1984

* Approved for public release; distribution unlimited

Acknowledgements

In performing the research for and writing of this thesis I have

had a tremendous amount of help from others. I wish to thank my faculty

advisor, Maj Walter D. Seward, for his guidance and assistance during

the entire course of my thesis effort. I am also indebted to my thesis

committee member Capt John Gordon for the time he spent reviewing draft

after draft. For technical assistance, thanks go to Capt A. Jay Kirchoff

and Lt Richard P. Benken. Thanks are also due Mr Paul Blatt and

Mr Bill Klotzback of the Flight Dynamics Lab for their support and effort

in sponsoring and funding this effort, and for their useful comments in

the final written stages of the thesis. For producing the final typed

copy of this thesis in record time, my thanks go to Linda Clere. A word

of thanks is owed to the Kirchoffs (Jay and Sue) for allowing me to take

over the office and guest room in their home during the final two months

of my thesis effort. Finally, I wish to thank my wife Faren for her

understanding and patience during those same two months as she awaited my

arrival to our new home in Seattle.

Luke R. Maki

2

,ALIl

\~~ #5, ,. I, i

ii

"I". _ -. i

Table of Contents

Page

Acknowledgements....................

List of Figures v

riList of Tables vi

Abstract vii

I. Introduction

Problem. 11
Scope 11
Sequence of Presentation. 11

II. User Requirements for Network. 13

6Baseline Effort 15
Expanded Operation. 194
Summiary 19

III. Selection of Network Hardware. 21j

Networks Meeting Data Transer Rate Requirement .. 21
Least Costly Network. 21
Suitability of Ethernet..................22
Selection of Ethernet Controller Chips. 26
Selection of Transceiver. 28
Selection of Coaxial Cable. 28
kSelection of Transceiver Cable 30

Expected Cost Per Node .%. 0. 30
Summary...30

IV. Analytical Performance Analysis of Network Hardware o . o 32

Network Performance Measures. 32
Expected Delay and Real-Time Operation 33
Throughput Requirements for the FCDL Network . 34
LA1~s Providing Low Delay for Low Throughput. 51
Total Average Delay Prediction for Proposed
FCDL Network 54
Summary 63

Page

V. A Software Design for Network Access 64

The Intel 82586 Local Communications Controller .64

Controlling the NIB for Real-Time Simulations ... 65
SEL 32/7780 HSD Considerations 70
Summary. 71

gVI. Conclusions and Recommendations. 73

Conclusions. 73
Recommendations 76

Appendix A: Expected Cost of Ethernet Connection

I ~~Per Node 79

Appendix B: Analytical Method for Predicting

FCDL Ethernet Performance 80

Appendix C: The Network Interface Board (NIB) 88

Appendix D: NIB Operations Control SADT Actigrams. 92

Bibliography 195

Vita 198

iv

List of Figures

Figure Page

I. Present FCDL Computer System Configuration (Simplified) . 5

2. Typical Trunk Rack "A" Patching 6

3. ISO Seven-Layer OSI Protocol Model 8

4. Proposed Ethernet Cable Layout 29

5. First Pass IC, M+N = 2, Missile Models in SEL A 41

6. IC, M+N = 2, Missile Models in SEL A 42

7. OP, M+N = 2, Missile Models in SEL A 43

8. OP, M+N = 2, Nodes Compute Own Missile Models 46

9. First Pass IC, M+N = 4, Nodes Compute Own Missile Models . 47

10. IC, M+N = 4, Nodes Compute Own Missile Models 48

11. OP, M+N = 4, Nodes Compute Own Missile Models 49

12. Transfer Delay - Throughput Characteristics of Four
Subnetworks 53

13. Transfer Delay - Throughput Characteristics of Proposed
FCDL Network 58

14. Packet Delay Probability - Throughput Characteristics
of Proposed FCDL Network 60

15. NIB State Diagram 66

Iv

W - .Z N- -

List of Tables

Table Page

I. Local Area Networks > 10 Mb/s 22

II. Sources for Ethernet Chips. 27

III. LAMARS Controller Data. 36

IV. Possible Transmissions for Network Nodes. 38

V. Breakdown of Physical Channel Delay 56

vi

AFIT/GCS/ENG/ 84S-3

Abstract

This investigation examined the use of a Local Area Network (LAN)

in the real-time environment of the Air Force Flight Dynamics Labora-

tory's Flight Control Development Laboratory (FCDL) flight simulation

facility.

Using the requirements of the FCDL's Manned Combat Station (MCS)

project as a guideline, a LAN based on the Etbernet protocol specifica-

tion was identified as suitable for use in the real-time flight simula-

tion facility. Both the architecture and the performance of the

Ethernet protocol were examined to make this conclusion. The selection

of the Intel 82586 Local Communications Controller chip (which defaults

to the Ethernet specification), the in-house design and manufacture of a

Network Interface Board (NIB) using this chip, and the standard opera-

ting procedure of FCDL simulations allowed a software design to be

completed for the control of the NIB. The investigation is concluded

with a recommended course of action for the eventual implementation of

the proposed LAN and software design.

vii

DESIGN AND SPECIFICATION OF A LOCAL AREA NETWORK ARCHITECTURE

FOR USE IN REAL-TIME FLIGHT SIMULATION

I. Introduction

The Flight Control Development Laboratory (FCDL) is a research and

development aircraft simulation facility supporting the Flight Control

Division of the USAF Flight Dynamics Laboratory. Within the FCDL, a

need exists to continually update and improve the simulation facility.

This includes the enhancement of both the simulation computational

equipment as well as the aircraft simulator cockpits and associated

hardware. In the past, when a new piece of equipment was installed in

the facility, a highly specialized, one-of-a-kind interface was

developed to link new equipment with existing equipment. Each new

peripheral would use an interface that was customized for that par-

ticular application. Often, these interfaces would be developed by

different vendors with different design philosophies. The result has

been a collection of specialized interfaces that have proved to be very

expensive, difficult to maintain, and often fail to meet desired trans-

fer rates.

The FCDL facility is planning to install several new peripheral

processors in the facility. This installation is being accomplished by

in-house personnel. With this installation will come a new interfacing

concept that is proposed to be the FCDL standard for linking peripherals

•. -- --. -

with the simulation computers. The proposed concept is the implementa-

tion of a Local Area Network (LAN) of simulation peripherals. The

distinguishing feature of the proposed LAN is its use for real-time

aircraft simulrtion.

The phrase "real-time" needs additional explanation. Flight simu-

lations conducted in the FCDL are primarily research and development

prograns to investigate advanced flight technologies, with a man-in-the-

loop to allow the man-machine interactions to be analyzed. These simu-

lations are achieved by t.,athematically modeling an aircraft on a hybrid

system for digital and analog computers, and are considered "real-time"

in that the Fimulated aircraft states match those of the real aircraft

at any point in time for the same environmental and pilot input condi-

tions. Thus, the pilot experiences the illusion of actually flying the

aircraft being simulated. Since digital computers are used, the states
I

of the aircraft are computed once every cycle. This cycle time is

generally on the order of 25 milliseconds for simulations in the FCDL.

For a LAN to be considered "real-time", then, two or more computers must

be able to exchange information at least once every cycle time. As will

be shown in Chapter IV, real-time operation can be obtained with an

appropriate LAN.

Several factors have generated the need for the implementation of

this type of LAN. First, the number of expansion slots available in the

main simulation computers, Systems Engineering Laboratory (SEL)

32/7780's, is limited. Only one more interface board can be added to

each of the two computers and, without a LAN, this means each could

commuuicate with only one peripheral per expansion slot. With the

2

implementation of a LAN, the main simulation computers can

communicate with many peripherals while using only one of these

expansion slots.

Second, it is becoming apparent that the FCDL simulation facility

will be required to interface its simulation computers to existing

peripherals in other branches of the Flight Control Division. Those

peripherals will have their own intelligent controllers and will be used

on a temporary basis for a particular timulation, then returned to the

appropriate branch. The use of a LAI; allows for this temporary expan-

rion without dcveloping entirely new interfaces to the SEL simulation

conmputers. The LAN provides a standard protocol and technique for

comm.unicating between the simulation computers and peripheral

controllers.

Third, the FCDL has an immediate need to interface the main simula-

tion computer to a new peripheral processor for the Manned Combat Station

(MCS) program. Part of the MCS program involves interfacing a micro-

processor controlled workstation to the main simulation computers.

Another portion of the program involves researching the use of distri-

buted microprocessor controllers for I/O control of simulator cockpits.

For example, an individual cockpit controller would control cockpit

instrumentation and compute the aerodynamics model for a simulated

aircraft, while possibly interfacing real-time with one or more other

simulations attached to the network. To coordinate these simulations

and to make the pilot of one simulation aware of another's existence,

the state information of each must be transferred over the network to

the other. Other logical information, such as the state of the

3

megabit/second to make the transmission rates of the network components

somewhat compatible, and yet keep a low cost per node option viable.

The fourth protocol requirement above is necessary to make sure the

flexibility of the FCDL research facility remains intact. Data of

variable length and of variable type (real, integer, logical) can be

expected to be transferred. Furthermore, the order of data in a data

packet may change from simulation to simulation.

Finally, the fifth protocol requirement above is necessary in terms

of simulatioh fidelity, accuracy, and safety. An error in the data

transferred over a network in a real-time, man-in-the-loop flight simu-

lation could cause a discontinuity and, if the discontinuity is in a

motion command to a moving-base simulator, physical harm could result to

the pilot.

Furthermore, minimal operational requirements for use on the SEL

include:

1) Any data handler software developed in support of the
protocol design will be implemented in SEL Assembly language;

2) The protocol software will be accessible to the user
via a FORTRAN library function.

The first operational requirement above is necessary as there is no

Higher-Order-Level language available with which to either develop the

data handler software or run the software. Therefore, the data handler

must be written in SEL Assembly language.

The second operational requirement above will allow the user to

simply call upon the data handler as a function. Standardization and

ease of use were the primary motives for establishing this requirement.

17

is available. In other words, transmissions can occur at unknown times

(at least during the first cycle) during a simulation cycle time because

the different stations will be accessing the network at random times,

dependent upon when each station requests network time.

The third protocol requirement above was specified after surveying

the data transfer rates of commercially available LAN's, and determining

that the HSD might be the slowest element in the data communications

chain. le lISD is advrtised to have a maximum data rate of 834

kilowords/second, where a word is four bytes long to match the bus of

the SEL. In keeping with the intent of being able to interface any

processor to the network, with 16 bits being the most likely, a nominal

16 bits was selected es the design point. Therefore, the HSD would have

a maximum data rate of

(834 kilowords/second) (2 bytes/word) (8 bits/byte)

13.344 megabits/second (Mb/s) (1)

with overhead not included. Including an assumed overhead factor of

1.5, this rate drops to 8.896 Mb/s. A 10 Mb/s Ethernet system using 500

byte data packets (the size anticipated for use by the FCDL, discussed

in Chapter IV) has overhead reducing the transfer rate of usable data to

9.294 Mb/s (18 byte header, 8 byte preamble, and an interframe spacing of

9.6 microseconds). The survey (see Table I, Chapter III) indicated that

10 megabit/second systems were the most common, with 12 and 50 p

megabit/second systems available. The latter two, however, were not

attractive due to their high cost relative to the cost of some of the 10

megabit/second systems. The requirement was thus placed at 10

16

." " . '._ _d --~ b. ..,, ,,Id w,, , - _ . _

simulations. The user's requirements for the network are subtly stated

in the above excerpt. More succinct statements of the requirements

follow, with some background explanation as to their origin.

Baseline Effort

The minimal requirements for the real-time LAN to be acceptable for

FCDL simulation research can be defined in two areas, namely protocol

and hardware. The minimization of LAN cost is also of concern as the

FCDL operates within a limited budget.

The protocol must have the following characteristics:

1) The data transfer must be conducted real-time to
maintain the integrity of the man-in-the-loop simulation;

2) Data transmission must be conducted asynchronously;

3) The data transfer rate (the bandwidth of the medium)
must be at least 10 megabits/second;

4) The protocol must be able to handle data in a
"freefield" format; that is, data of variable length and
of variable type;

5) The protocol must have error detection capability and
appropriate methods to deal with an error.

The first protocol requirement above is obviously necessary for the

facility to continue real-time flight simulations. This requirement

places constraints on the amount of delay a data transmission can incur

over the network. Thus, the network chosen and designed must be able to

transfer all required data within the cycle time of the simulation.

The second protocol requirement above refers to the contention that

the SEL, or any other processor, will not communicate directly with the

network via handshaking mechanisms. Rather, the processor will request

that data be transmitted, and the NIB will transmit it when the network

15

allows them to provide more computational power. This
use of a microprocessor to control the cockpit has been
coined a "smart cockpit". In order to implement the
concept of a "smart cockpit", a technique must be devel-
oped to communicate real-time between the simulation
computer and this microprocessor controller. This
communication link must be able to also communicate to
other intelligent devices that may be added to this
communications link at a future date.

.The network interface must be a real-time,
high-speed, bidirectional, digital-to-digital link
between the central simulation computer (a SEL 32/77) and
a microprocessor-based MCS cockpit controller. The
interface will allow the transfer of data between the two
systems in order to relieve the SEL of some of its compu-
tational load, and to supply the SEL with, for example,
the state of the MCS simulation for relative aircraft
computations. An expansion of the interface to allow
more than one peripheral processor will be addressed
later in the project.

The network interface effort will be conducted
in two tasks, the second utilizing the results of the
first. The primary task is to develop the protocol and
hardware on the SEL necessary to communicate with one
peripheral microprocessor real-time. The protocol must
have effort detection capability to assure integrity of
the simulation, with appropriate contingencies in
the event of an error. The minimum data transfer rate
must be 10 megabits /second. The hardware must be
designed such that communications with the peripheral
processor are possible over a maximum distance of 350

feet. The second task will address the issue of real-
time data communication with more than one peripheral
processor. This task will involve more testing than
designing as the protocol necessary will be anticipated
and included in the first task. The data transfer rate
and error detection requirements must be maintained, the
results of these tests will have a tremendous impact on
the design of future networked simulations.

The overall intent of the MCS project, then, is to first establish

a functioning LAN with two nodes in order to prove the concept of using

a LAN for real-time communications. The ultimate objective is to expand

the network to include additional nodes for more complex H-on-N

14

II. User Requirements for Network

The requirements of the real-time LAN for any user in the FCDL are

essentially the same as for the Manned Combat Station (MCS) project, and

are generally stated in the MCS's requirements specification (Kirchoff

and others, 1983). As such, the network interface specification

described in this paper is an integral part of the MCS project, and must

be defined to assure proper data communications between the hardware and

the software of the integrated system.

The following is excerpted from the MCS requirements specification

to provide further understanding:

AFWAL/FIGD requires the immediate ability to simulate
1-on-I piloted aircraft engagements, and will eventually
require M-on-N piloted aircraft engagements capability,

where M+N = 4. AFWAL/FIGD currently has the capability
to investigate in detail most of the operations of total
mission analysis. These inve:tigations currently use an

adaptive computer target model for the experiment pilot
to "chase". The MCS is designed to replace this adaptive
computer model with a piloted target aircraft. This MCS

pilot will also be allowed to fully participate in the

simulation and not act as just a chase vehicle. However,
the MCS is not required to provide the simulation

fidelity that currently exists in the cockpits within the
Flight Control Development Laboratory. This reduction in

fidelity will allow the introduction of a "simulation
workstation" which allows a pilot to "fly" a fighter type
aircraft without all cockpit instruments ad visual dis-

plays. Such a workstation has already been developed by
McDonnell Douglas at their St. Louis simulation facility.
This existing workstation, called a Manned Interactive

Combat Station (MICS), will be used as a reference for
the development of the AFWAL/FIGD Manned Combat

Station.

.The MCS will be designed to include a

microprocessor-based computer system to increase

flexibility to the workstation. The addition of computer
intelligence to the MCS cockpit provides the ability to
communicate from the simulation computers to the cockpit
at a high instruction level rather than a raw data level.
This offloads I/0 from the simulation computers and

13

the communications protocol and hardware to be considered for the FCDL

network. Chapter IV, through analytical studies, verifies that the

protocol and hardware chosen can meet real-time operating requirements.

Chapter V contains a brief description of the Intel 82586 network con-

troller chip, and presents an interface software design for the FCDL

network based on this chip and the Network Interface Board (NIB)

designed in-house by Lt. Richard Benken of the organization AFWAL/FIGD

(the Control Synthesis Branch of the Flight Control Division, USAF

Flight Dynamics Laboratory). Control of the SEL 32/7780 HSD is also

briefly considered. Finally, Chapter VI presents a summary of this work

and contains a recommended course of action to be taken in following

efforts.

12

tbe order of the transmitted data and assuring the destination is aware

Pof that order. The Application layer will obviously be necessary, and

will include tasks such as diagnostics.

Problem

The problem investigated in this study was to determine the hard-

ware necessary to implement a real-time network in the FCDL based on

FCDL requirements, analyze the expected performance of the network

hardware, and design the protocol software necessary to allow an intel-

ligent controller to obtain real-time communications on the network.

4 ScopThe hardware necessary to implement a real-time network for the

FCDL was determined. An analysis was conducted to estimate the delays

that would be incurred by using the proposed network, and the impact of

such delays on simulation operation. The design of the protocol soft-

ware is based on the Intel 82586 Local Communications Controller chip

I used on the NIB, and a suggested sequence of steps to be taken to

initialize and control the chip is included. Also, a brief review of the

High Speed Device Interface used with SEL 32/7780 is included for con-

4 sideration by the user of the SEL on the proposed network.

Sequence of Presentation

After an introduction to the goals of the FCDL and the need for a

Local Area Network are presented in Chapter I, Chapter II describes the

requirements defined by the FCDL that the network must meet. Chapter

III presents the results of a cost /capabilities study which determined

Finally, the Application layer directly serves the communicating

r end-user application process by providing the distributed information

service appropriate to the application and its management.

Of the seven layers, the last four need to be considered for inclu-

sion in software for the real-time application in the FCDL. The first

two layers (Physical and Data Link) of the seven are being implemented

in hardwax. and firmware for at least one communications protocol by

several manufacturers (see Chapter III). Therefore, these layers can be

obtained off-the-shelf. The third (Network) and fourth (Transport)

layers are generally associated in their function of handling network

41 control, such as addressing and routing information through the network,

controlling errors, and accounting for services received. The most

important function provide by these layers is the confirmation of packet

receipt, a critically important function for a real-time application

* such as flight simulation. There must be assurances that a node on the

* network is updated every cycle, or the validity of the simulation may be

in question. Note that, if a cyclic redundancy check (CRC) algorithm is

implemented in the data link layer, the two layers complement one

another by assuring that data is sent and that it is intact. The

Session layer, as it deals with virtual circuits and the like, is not

appropriate for the task at hand. The paths of communication between

any two devices on the network will be simply determined by a destina-

tion address in the data packet. No special set-up procedures are

anticipated. The Presentation layer will have to be considered only in

that different types of data are anticipated to be transferred (real,

*integer, logical). The user will have the responsibility of managing

10

|-J

of the packet is passed up to the next layer for further examination as

required.

A better understanding of the OSI model can be obtained with a

brief description of the function of each layer. The Physical layer

describes the physical media over which a bit stream is to be trans-

mitted, and such specifics as cable type, signal levels, bit rate,

etcetera.

The Data Link layer describes the rules for transmitting on the

physical media, such as information format, the media access method,

frame (information packet) transmission, and the media release

mechanism. The latter two layers have been implemented on silicon chips

for some popular protocols by several manufacturers, making the

networker's job much easier (Burskyin, 1982: 80).

The Network layer governs the switching and routing of information

between networks.

The Transport layer handles services such as end-to-end acknow-

ledgements of successful message receptions, and other message integrity

functions (besides functions such as cyclic redundancy code, or CRC,

checks).

The Session layer manages the requesting and deleting of virtual

circuit connection services provided by the transport layer.

The Presentation layer provides for any necessary translation,

format conversion, or code conversion to put the information into a

recognizable and useful form.

9 -7

0 I-

2--J

-J C, 0 .'

L±a

Ls4 CA

I I l 1

CL- K
* 0 K IzA

i.E

essentially a direct memory access (DMA) device which attaches to the

(SEL bus and controls I/0 for the SEL 32/7780, thereby freeing the SEL

CPU for other tasks.

The final item required is the network protocol to perform communi-

cations quickly and efficiently. The software designed to implement the

protocol should be generic enough to allow easy portability between host

computers, yet specific in its communication with the network interface.

4 As a way of directing the rapid growth of LAN's and their associated

protocols, the International Standards Organization (ISO) drafted and the

American National Standards Institute (AN~SI) adopted an Open Systems

4 Interconnection (OSI) reference model that now serves as a backbone for

protocols within a network (Allan, 1982a: 107). As shown in Figure 3,

one layer interacts with another via a protocol in three ways: peer to

WN peer, where a layer communicates with the same layer of another node;

service provider, where a lower layer provides a service to the next

higher layer of the same node; and service requester, where a higher

* layer uses the services provided by the next lower layer of the same

node. Information is passed from peer-to-peer by attaching a header to

the beginning of the data packet that is to be transmitted (such as API,

4 or Application protocol Interface header, as shown in Figure 3). Each

layer tacks on its header as the packet descends through the layers.

Each layer performs a service for the data packet based on control bits

4 set in the packet. Upon receipt of the packet at the destination node,

a similar process is performed in reverse order. Each layer examines

the packet area where it expects to find its header. Any remaining part

7

4

Figure 2. Typical Trunk Rack A Patching

communications with the main simulation computers. The same is true for

other microcomputers procured to control additional peripheral equip-

ment, such as the terrain boards.

Besides an intelligent controller, some interfacing hardware must

exist to physically connect the peripheral to the network. One of the

MCS program subtasks is to design, build, and test this network inter-I

face board, or NIB. The proposed design will operate with any parallel

I/0 interface under computer control. This generic approach allows one

NIB design to operate for all nodes of the network. The FCDL SEL

32/7780 computers to be connected to the LAN have the additional

requirement of using a SEL/Gould High Speed Device (USD) intelligent

4 input/output (I/O) peripheral to interface with the NIB. The HSD is

• *" °, " "o "-',°- "

I . • - .,

IICI
LLLU

1(31

o

44

0

L)

II

5r

I$

* simulation itself (Initial Conditions, IC; Operate, OP; Hold, HOLD; or

Reset, RESET), must also be transferred. Should this use of distributed

controllers prove to enhance simulation capabilities, the FCDL could

expand the proposed LAN up to a dozen device controllers that would all

be linked to the simulation computers. Because of this potential, the

MCS program has chosen to develop a real-time communications LAN to link

the MCS cockpit to the simulation computers.

A significant advantage with using a LAN is the elimination of the

trunking stations (Trunk Racks A and B) that currently exist for the

analog interfacing of simulation computers to the various simulation

peripherals, including cockpits and terrain boards (Figure 1). A

trunking station connects the appropriate computer outputs to the

desired simulator inputs using patch panels and patch cords. Figure 2

is a picture of Trunk Rack A, indicating the complexity of the patching

currently required. With the full expansion of the proposed real-tive

LAN, the cumbersome task of patching these panels, and the man-hours

wasted trying to find broken wires and bent pins in a patched panel, can

be avoided. Furthermore, the use of a LAN instead of trunk racks will

minimize the distance analog signals must travel, and thereby minimize

the noise they pick up along the way.

While the networking approach does provide good expansion potential

beyond current interfacing techniques, there are equipment requirements

4 that must be met before networking can satisfy FCDL's needs. To be con-

nected to the network, a peripheral must have a user programmable, intel-

ligent controller that communicates through a parallel I/0 interface.

4 For the case of the MCS, a microcomputer system will control all

4

The hardware must have the following characteristics:

1) Any new hardware will not require modifications to the
existing SEL hardware;

2) The hardware must be able to interface with the
parallel 32-bit data format of the SEL;

3) The hardware must be able to transmit the digital data
over a 350 foot range with no errors caused by signal
distortion.

The first hardware requirement above was made to force the network

desigr to be generic and compatible with almost any system. The

requirement as stated is really incomplete, and should read that

no modifications are required to any system attached to the network.

The intent is to be able to attach to the network any system that

has a parallel port and some control lines.

The second hardware requirement above was made to assure the net-

work could transmit all 32 bits of a four byte SEL word if necessary,

even if the NIB interface was only 16 bits wide. The latter situation

would just require two transfers to get the whole word transmitted (with

the destination prepared to reassemble the two halves).

The third hardware requirement above was made based on an estimate

that the furthest separation of any two nodes on the network would be

350 feet, or approximately 117 yards. A more accurate measurement

revealed that 240 meters (787.4 feet, or 262.5 yards) is actually the

minimum required (see Chapter III, Figure 4). Therefore, the design

requirement stated in the MCS specification was too conservative. This

change, however, does not impact the final result of this analysis.

18

0

Expanded Operation

Once the initial system LAN interface has been demonstrated, the

goal will be to connect additional peripheral processors. The upper

limit on the number of processors that could be connected to the network

is practically bound by the data transfer rate, the amount of data

transferred, and the amount of delay that can be tolerated in receiving

the data. As will be shown in Chapter IV, the anticipated full comple-

ment of processors that will be connected to the network, twelve, will

not significantly degrade response performance.

Summary

4 Using the MCS project as a guide, the user requirements for a real-

time LAN have been stated in terms of network protocol requirements,

hardware requirements, operational requirements, and cost constraints.

(~ A summary of the requirements stated in this chapter appear below.

The protocol must have the following characteristics:

1) The data transfer must be conducted real-..ime;

* 2) Data transmission must be conducted asynchronously;

3) The data transfer rate must be at least 10 Mb/s (over-
head not included);

4) The protocol must be able to handle "freefield"
* formatted data;

5) The protocol must have error handling capability.

Operational requirements include:

1) The data handler sotware for the SEL will be in
Assembly language;

2) The protocol software will be accessible via a FORTRAN
library function.

19

9

Hardware requirements include:

1) New hardware will not require modifications to exis-
ting SEL hardware;

2) The hardware must be able to interface with the
parallel 32-bit data format of the SEL;

3) The hardware must be able to transmit digital data
over a 240 meter range with no errors from signal distortion.

The selection of suitable network hardware to meet these require-

ments can now be made, and this topic is addressed in Chapter III.

20

6-

.6

III. Selection of Network Hardware

This chapter presents the approach used to select the hardware

that would meet the requirements stated in Chapter II. Basically, a

survey was performed of available networks that advertised a maximum

data transfer rate (bandwidth of the media) of at least ten (10) mega-

bits per second (Mb/s). Cost was next employed to narrow the choices,

which resulted in one particular LAN protocol, known as Ethernet, being

least expensive to implement per node. The suitability of this protocol

or use in a real-time environment was examined first before further

pursuing its use. This chapter discusses its suitability on physical

operating characteristics, and Chapter IV discusses its operational

performance. After determining it could be used based on physical

operating characteristics, the hardware necessary for its implementation

was selected.

Networks Meeting Data Transfer Rate Requirement

Table I below is a compilation of data (Allan, 1982: 92-93;

Reagan, 1983: 4-121)" which summarizes the local area networks available

as of late 1982 meeting the data rate requirement. The networks of

Table I represent a minority of the available networks providing data

communication. Most available networks operate at a data rate less than

ten Mb/s.

Least Costly Network

From Table I, it is obvious that there are many commercial net-

works available that meet the single requirement of ten Mb/s. However,

the cost for attaching a user to a network varies by greater

21

I ?

TABLE I

Local Area Networks 10 Mb/s

Network Name Manufacturer Maximum Data Rate Cost/Node

DOMAIN Apollo Computer 12 Mb/s $75,000 +

Ethernet Xerox 10 " $250 - $1,000

HYPERbus Network Systems 10 " $2,150 - $6,950

HYPERchannel Network Systems 50 " $40,000

Net/One Ungerman-Bass 10 " $500 - $2,500

Planet Racal-Milgo 10 " $1,000

than two orders of magnitude. From available data, the Ethernet network

made by Xerox can be the least expensive at 250 dollars per connection,

while connecting to Apollo Computer's DOMAIN network can cost in excess

of 75,000 dollars. As it was FCDL management's intent to obtain this

network at minimum cost, an Ethernet-type of network solution was

decided upon as worthy of further investigation.

Suitability of Ethernet

Ethernet is a local area network developed jointly by Digital

Equipment Corporation (DEC), Intel Corporation, and Xerox Corporation.

The Ethernet specification (Digital Equipment Corporation and others,

1980) was developed through collaboration of the three corporations, and

* after several years of effort by Xerox on an earlier prototype Ethernet.

The suitability of Ethernet for a real-time communications application

such as for the MCS project can initially be determined by examining the

* 5 design parameters characterizing the physical connection of elements

22

.....0....

(microprocessors, terminals, etc.), or nodes, that make up the LAN. The

primary parameters are: transmission mode, topology, transmission

media, the class of elements to be interconnected, reliability, and, for

implementation as soon as possible, availability. Performance charac-

teristics, such as the delay a user might experience in the transfer of

a data packet using the Ethernet protocol, are considered in Chapter IV.

Transmission mode refers to the use of either digital or analog

signals on the network. The Ethernet is designed to transmit digital

signals, and this is suitable for the intent of the FCDL LAN. It is

expected that there will be analog-to-digital (A/D) and digital-to-

analog (D/A) conversions necessary to conduct a flight simulation, but

these operations will be done outside of the LAN network environment.

For example, analog computers are presently used to model the flight

control systems of simulated aircraft, but these are interfaced to the

SEL 32/77"s via the Hyshare link as shown in Figure 1. This arrangement

will not change with the addition of a LAN. Also, hardware feedback

signals from simulation equipment are typically analog, but these will

be converted to digital by A/D converters at the equipment's host compu-

ter prior to being transmitted over the network. Therefore, an all-

digital LAN meets requirements.

Topology of the network required in the FCDL is very important, as

the transfer of data for real-time flight simulations will be the

primary use. It is important that control of the simulation be distri-

buted, in that the failure of any one element should not adversely

effect the operation of other elements on the network. This constraint

eliminates a star network as there is typically a primary element that

23

controls the operation of the whole network. Ring topologies are also

not desirable as the failure of one element would preclude the continua-

tion of a data message around the ring. It is important that data flow

continue after a failure so that the simulation can be terminated in a

controlled manner. A double ring network would allow continued data

flow, but is accompanied by more complex hardware and protocol, and

thus, higher cost. This leaves the bus topology, which is the most

desirable as it is resistant to single-point failures (Franta and

Chlamtac, 1981: 13). Ethernet has a bus topology, namely a branching

non-rooted tree. This topology, as in other busses, allows the trans-

4 mission of messages away from the originating node in both directions,

and each other node can test message content as it passes by to deter-

mine if that node is the intended destination of a transmission. A

W failure of a node on such a system would still allow the transmission of

messages between other nodes. The other nodes would become aware of the

failed node during a simulation by either a controlled notification from

the failed node, or the lack of transmissions from the failed node. In

either case, the simulation could be terminated in a controlled manner.

Ethernet uses coaxial cable as the transmission medium, as most

local networks do. Of the four most used media for any type of network

(coaxial cable, radio, satellite, and fiber-optics), coaxial cable is

the most popular due to its moderate cost, high bandwidth, and low bit

4 error rate, typically between one bit in 107 and one bit in I011 bits

(Franta and Chlamtac, 1981: 21-22). The lowest possible error rate is

desirable for the real-time application. Furthermore, Ethernet uses

4 baseband signaling to place digital signals directly on the coaxial

24

cable, with the capability of transmission over 1500 meters. This is

adequate for the use of Ethernet in the FCDL, as the length of cable

required for the entire facility is 240 meters. Finally, tapping into

the cable-based Ethernet network is as easy as connecting and disconnec-

ting N-series connectors on a transceiver device, and this generally

does not disturb other traffic on the network. Thus, if a simulator cab

on the network is down for maintenance, it can be separated from the

network with little trouble.

The class of elements that can be interconnected via the Ethernet

network depends only on the availability of a Network Interface Board

(NIB) for eacn element. The devices which FCDL personnel intend to use

can all communicate via a parallel port, so the NIBs all must have a

parallel port and some control lines for handshaking. Commercial NIBs

are available, but were designed for particular processors, or cost more

than one designed in-house. Chapter V discusses the functional specifi-

cation for an NIB designed in-house, using state-of-the-art Ethernet

controller and serial input/output chips, which will only limit the type

of element to those with parallel ports.

Reliability of transmission is a must for the real-time man-in-

the-loop flight simulations to be conducted. Ethernet is one of the

more reliable types of networks for several reasons. First, it has

distributed control, thereby not allowing a network failure from the

failure of a single node. Secondly, the bus topology of Ethernet has

the potential of being more reliable than a ring network in that for the

latter each NIB must regenerate each messa~,e to pass it on, whereas in

bus systems all NIBs excrit the one transmitting the message remain

25

passive, so regeneration is not necessary and the chance of an error

t being committed is lessened (Franta and Chlamtac, 1981: 13, 45).

Lastly, Ethernet's use of cyclic redundancy checks (CRC), further

enhances reliability (Franta and Chlamtac, 1981: 35, 45).

From the above discussion, Ethernet appeared to be appropriate.

The question of Ethernet's capability to functionally perform the real-

time task is very important, and is addressed in Chapter IV. The last

consideration besides performance was the availability of hardware to

implement a working network. The primary hardware needed were the chips

implementing the Ethernet specification. Several chip sets were adver-

tised as meeting the need, and they are discussed below.

Selection of Etheinet Controller Chips

As of late 1982, six groups were identified as possible sources

for network controller chips implementing the Ethernet specification

Version 1.0 (Digital Equipment Corporation and others, 1980). These are

listed in Table II below (Burskyin, 1982: 80).

Of the possibilities presented in Table II, only the chip sets

manufactured by Advanced Micro Devices (AMD) and Intel were seriously

considered, as they were the most likely to be in production by mid-1984

when they would be needed by the FCDL. Although Seeq-3Com actually had

chips already in production, they were less than desirable as they only

implemented the basic interface control functions of collision handling,

address generation, CRC generation and checking, and serialization and

deserialization. By waiting for the more complex chips manufactured by

Intel and AMD, capabilities such as on-chip memory management and, in the

2

26

TABLE II

Sources for Ethernet Chips

Original Developers Availability of Samples

AMD-Mostek Late 1983

Ungermann-Bass- Late 1982

Fujitsu

Intel-DEC-Xerox Late 1982

National Late 1983
Semiconductor

Rockwell Int'l. Late 1982
Microelectronics

Division

Seeq-3Com Mid 1982

case of the Intel controller chip, diagnostic routines and error coun-

ters could be obtained. These latter functions, although not necessary

based on the requirements stated in Chapter II, would make the implemen-

ter's task much easier by providing diagnostic routines that would

otherwise have to be developed in-house. Furthermore, if it were neces-

sary in some exLreme situation, the Intel chips can be reconfigured to

have a faster response time than Ethernet by reducing the number of

overhead bits per transmission, and reducing the backoff time per colli-

sion (Intel Corporation, 1982: 4-7). Thus, the Intel chip set, consis-

ting of the 82586 Local Communications Controller and the 82501 Serial

I/O chip, was the most desirable for its capabilities, configurability,

and availability. Availability was the weakest asset of this chip set,

however, for although Intel originally advertised availability of

27

samples in late 1982, samples of the 82586 were not obtained until early

1984.

Selection of Transceiver

The transceiver is the interface between the NIB and the coaxial

cable. It provides ground isolation between the coaxial cable and the

transceiver cable connection to the NIB, level conversion between the

signal levels on the transceiver cable and the coaxial cable, and a high

impedance connection to the coaxial cable.

In that Ethernet transceivers are standardized in their function,

only limited research was done to survey those available on the market.

The only requirement was that it meet Ethernet specifications. A

transceiver manufactured by 3Com Corporation was first brought to the

FCDL's attention and, as it was available immediately and was equipped

to easily connect to the proposed network, it was selected.

Selection of Coaxial Cable

The coaxial cable selected is manufactured by Belden (Belden

Corporation, 1983: 64-65), and meets the Ethernet Specification 1.0

(Digital Equipment Corporation and others, 1980: Section 7.3). A

length of 240 meters was determined adequate to span the FCDL and allow

controllers to tap into the network. Figure 4 indicates a proposed

layout.

Cables meeting the Ethernet specification have annular rings

marked on the cable jacket along their entire length at 2.5 meter inter-

vals (+5 centimeters). The rings indicate where a transceiver tap can

be made to add a node to the network. The relative spacing between

28

LAJ

Q

QQ

LJJ

LC)

or))

ItI

Q- C)

00

00

29

taps, and not the actual position on the cable, is the important point.

It is necessary to minimize signal reflections due to the non-infinite

bridging impedance of transceivers and their associated connections, and

the controlled relative spacing ensures that the reflections do not add

in phase to a significant degree (Digital Equipment Corporation and

others, 1980: Section 7.6.2).

Selection of Transceiver Cable

The transceiver cable is a shielded twisted pair cable (four

pairs) which connects the NIB to the transceiver. It can be up to fifty

meters long and mates to the Com transceiver's 15-pin D-series male

conector with an equivalent female connector. This cable was also

procured from Belden (Belden Corporation, 1983: 64-65).

Expected Cost per Node

Assuming the LAN designed for the FCDL will eventually have 12

nodes, an average cost for connection of a node to the network can be

estimated from the prices paid by the FCDL for some of the hardware, and

from cost approximations for additional logic necessary for the NIB

designed in-house. Appendix A summaries the relevant data.

Summary

In this chapter, a LAN architecture, Ethernet, has been shown to

meet at least certain operational requirements necessary to transmit

data for a real-time simulation environment, such as distributed control

and reliability. The hardware to implement Ethernet was selected based

on compatibility with the Ethernet specification and availability.

These requirements are secondary, however, to the actual performance of

30

the LAN in delivering information real-time. The chosen LAN must ensure

that all data packets intended to be transmitted and received within one

cycle time of a simulation are indeed transmitted and received. The

failure to meet this performance requirement defeats the use of the LAN.

Chapter IV explores the expected performance of Ethernet in the real-

time environment of the FCDL.

31

M+N 2, Each Node Computes Own Missile Models. This scenario is

the same as the first, except that the SEL and the MASSCOMP each compute

their own missile models.

The states of First Pass IC and IC are identical to those shown in

Figures 5 and 6, and are not repeated. The OP state of Figure 8,

however, differs from Figure 7 in that the states of the MCS missiles

are now passed from the MASSCOMP to the SEL instead of vice versa. Note

that the number of bytes passed for this case and the first case are the

same.

M-tN = 4, Each Node Computes Own Missile Models. This scenario is

the same as the first two in terms of data communication, except that

each node must pass information to three other nodes instead of just

one. Figures 9, 10, and 11 display the states of First Pass IC, IC, and

OP for this case, respectively.

Network Throughput for Fixed Packet Size. Examination of Figures

5 through 11 reveals the following:

(1) The most number of bytes any one node must transfer
during a simulation cycle occurs for M+N = 2 with the
SEL computing the missile models (Figure 7), when the SEL
must transfer 460 bytes when all four missiles are flying.

(2) Both M+N = 2 cases require three data packets to
be transmitted during a simulation cycle, each less than
or equal to 460 bytes in length.

(3) The M+N = 4 case requires five data packets to be
transmitted during a simulation cycle, each less than or
equal to 412 bytes in length.

In order to simplify the analysis, and to allow room for the

addition of data to be transmitted, let a standard packet size of 500

bytes be defined, such that any transmission will consist of 500 bytes

of data, whether it be useful data or not. In this way, an upper bound

45

Note that, for First Pass IC and IC, the missiles are still

attached to the aircraft, so their states are the same as the aircraft's

states. The inertial velocities and angular rates of both aircraft are

transmitted from the SEL in order to initialize completely their states

when entering the OP state. For example, the IC for an airplane may be

a high-G turn, in which case just position information would not

suffice. Note also that the SEL is the "master" in that it sends the

MASSCOMP the First Pass IC conditions. Finally, during First Pass IC,

the MASSCOMP only transmits status information to the SEL to indicate

whether or not it came on line satisfactorily.

After First Pass IC, the simulation enters the IC state and waits

for the OP state. During this time, the simulation operator is waiting

for each pilot to give an indication that he/she is ready. The state

information of each aircraft is transmitted to the other in order for

the graphics software in the MCS controller and the target projector

software in the LAMARS controller to be used and to present a target to

each pilot in IC. The missiles are assumed to be still on the aircraft,

and the rates passed in First Pass IC are assumed to be stored in the

memory of the MOS controller.

In the OP state, the SEL is computing the states of its own

aircraft and missiles, as well as the states of the MCS missiles. The

status bytes are used to indicate the firing of a missile, the "killing"

of an opponent, and other flags the user may deem necessary. The status

bytes will also be used to indicate node or network failure in order to

stop the simulation in a controlled manner.

44

LAhIARS

NONJ- IJE T~.6Ck$
INJPUTS AMD FhBC' sIjAJALS
)ZEEMAC)'S
FROMI A'.IAPhC5 LAMARS

COAITPOLLER

STAT US M0?71cW~ IA/PuTS 2)
00) V)5uA4L IA/PUTS (169)

(i) STATUS (10)

§EL A

AiPcRAFT -7ATE~ DATA AIRCRAFT STATE DATA
OF ,1CS AIIYLAVkT oF SEL A A'P-PLANE, N15SILE5

OF MiC ft1I SSIEE

STATU ;

(NUnIVER oF BYFES
IAI PAREA1T)4IES)

FfEEI3RCK IA/PUTS

tics -0-

Figure 7. OP, M-iN =2, Missile Models in SEL A

43

LAN'ARS

N014- NE 7 W"J fEEDQ~cif PV
IA' PiTS AND 5 i,/ALS

F g btl A VOU IC5 L A N A L E R

STATU5 I-loT/OF] I VPUT Uz4)
(Io) VISUAL IAIPOrS (169)

STA7L)5 (10)

SEL A

Ah11CPWAT 57ATE OATA4
OP A1EPPLAA/I

(46)

5 TAT(Js
(00)

(TYPICAL)

(N~UM'BER or BYTES
IA/ FARE"T14E -ES)

Figure 6. IC, M*l= 2, Missile Models in SEL A

42

LATIAPS

NOA/- AIE TORJ(FEEDBAX VRV

9EECACjr -,
ROMi AVIDAJIC5 LAftAP

CONleOLLE P.

STATU VISUAL /NVcJ73S (/(,S?

(10) STATUS (10)

SEL A

X, ,-- PS+6
X,~ Vd/oC~fY OF B OT/

0), (p0RRF
0J0,9' 9 (94)

ST-ATUS TL)
(10) (to)

NUHG1ER OF 13YTFS
/, APEI ?ESS

P1ASSCOP

FEED GAC K IA)P VT ,

tICS #1

Figure 5. First Pass IC, M4N =2, Missile Models in SEL A

41

HOLD is used to examine the status of a simulation at a chosen

7 point in time, and essentially is obtained by holding fixed the state

data of a simulation. Thus, it is similar to the OP state, but all data

is being held constant.

With the possible states of a simulation and the content of data

packets defined, a closer examination of the dynamics of data transmis-

sion can now be made.

Three Probable M-on-N Scenarios. As stated in Chapter II, the

initial test of the FCDL network will be communication between the SEL

and one peripheral computer, this being a one-on-one combat engagement.

It is anticipated that each simulated aircraft will also have two mis-

siles. The distributed computing problem referred to earlier is enough

of a concern that both means of transferring the missile state data are

presented below. As will be shown, the total number of bytes necessary

to be transferred in either case is the same, so network throughput is

not affected.

I A follow-on test of the network will include an M-on-N simulation

where M+N -4. An example of the data communications necessary for

this scenario is also presented below.

M+l = 2, Missile Models in SEL A. In this scenario, an aircraft

simulated in SEL A is flying against one simulated in MCS #1. The pilot

of the SEL A aircraft is using the LAMARS. All missile model calcula-

tions are performed in the SEL. Figures 5, 6, and 7 display the data

communications necessary for the states of First Pass IC, IC, and OP,

respectively.

04

* improved hardware, a MASSCOMP can perform both the aero and missile

- models. Until that hardware is installed, though, the missile models

will have to be computed in the SEL and the results transmitted over the

network also. Examples of both computing distributions are presented

later in this chapter for the case of an M-on-N simulation where

MN= 2 (two aircraft, each capable of firing two missiles). Another

* case is also presented for M+N =4 (four aircraft, each capable of

firing two missiles) where the peripheral controllers do compute their

own missile models, because they should be capable of the additional

load by the time this level of M-on-N is performed in the FCDL.

Simulation States - First Pass.IC. IC, OP and HOLD. There are

four states in which a simulation can reside: the first pass through

that part of the software configuring the simulation for initial condi-

tions, First Pass IC (also known as RESET); the remainder of the cycles

Nei through initial conditions, IC; the dynamic, real-time, operating

portion of the simulation, OP; and a state in which the user freezes the

simulation at a particular moment in time, HOLD.

First Pass IC informs each node of its individual operating state,

and informs each node of the state of other nodes on the network

involved in the simulation.

IC primarily serves the purpose of allowing each node to signal

the "coordinating" node (SEL A, for instance) that it is ready to go to

OP.

OP is the real-time operating state, during which all data packets

must be transmitted and received within a simulation cycle time.

39

TABLE IV

Possible Transmissions for Network Nodes

Node Input Output

SEL A: 1) Aircraft State Data from 1) SEL A Aircraft State Data
Other Aircraft in

Simulation

2) Status Data 2) LAMARS Controller Data
3) Terrain Board Commands

4) Status Data

SEL B: Same as SEL A 1) SEL B Aircraft State Data

2) Terrain Board Commands
3) Status Data

LAMIARS
Controller: 1) LAMARS Controller Data 1) Status Data

1500:1 TB
Controller: 1) Terrain Board Commands 1) Status Data

w v~m5000:1 TB
Controller: Same as 1500:1 1) Same as 1500:1

F-ill
Controller: Same as SEL A 1) F-111 Aircraft State Date

2) Terrain Board Commands

3) F-ill Moton Base Commands
4) Status Data

Multi-Crew

Controller: Same as SEL A Same as F-Ill for

Multi-Crew
T-37
Controller: Same as SEL A I) T-37 Aircraft State Data

2) Terrain Board Commands

3) Status Data

MCS #1
Controller: Same as SEL A 1) MCS #1 Aircraft State Data

2) Status Data
Other MCS

Controllers: Same as MCS # Same as MCS #1

38

TABLE III

LAMARS Controller Data (Continued)

Operations Status Data Bytes

User Defined Flags to Control Simulation: 10

Terrain Board Commands

Pilot Offset from C.G. in X 4
Pilot Offset from C.G. in Z 4
Aircraft Pitch, Roll, Yaw Rates 12
Tangent of the Glide Slope 4

Runway Origin North and East 8

Altitude Above Sea Level 4
Heading Relative to North 4

Altitude Bias 4
* Terrain Board Scale 1 and 2 8

First Pass .125
On/Off .125

Total 44.25

Proposed Computing Distribution for M-on-N Simulations. When the

idea was first being discussed of distributing the computation workload

of the SEL 32/7780 via a LAN, the intent was to have each peripheral

controller compute not only the aero model of the peripheral's airplane,

but also that of (up to two) missiles it may fire. In this way, only

state data of another node's aircraft and missiles need to be transmit-

ted to the peripheral controller in order to compute relative state

data. However, after examining the capabilties of the MASSCOMP compu-

ters to be used as the peripheral controllers, there is some question as

to whether they can do much more than the aero model in the allotted

cycle time of 25 milliseconds. There is some confidence that, with

37
37

61

TABLE III

LAMARS Controller Data

Motion Systems

Symbol Meaning Bytes

gAAircraft Roll Rate 4
aA Aircraft Pitch Rate 4

CA Aircraft Yaw Rate 4

Leo Pilot Observed Longitudinal Specific Force 4
1_o Pilot Observed Lateral Specific Force 4

Po Pilot Observed Normal Specific Force 4

Total 24

Visual System (for air-to-air target)

0A6 Aircraft A Initial Roll Position 4

eA0 Aircraft A Initial Pitch Position 4

VA. Aircraft A Initial Yaw Position 4

U A Aircraft A Longitudinal Velocity 4

'A Aircraft A Lateral Velocity 4

VA A Aircraft A Normal Velocity 4

A Aircraft A Roll Rate
4

Aircraft A Pitch Rate
4

Y Aircraft A Yaw Rate 4

XAYA?A Aircraft A Initial Position 12

X8oY8Z5o Aircraft B Initial Position 12

Ua Aircraft B Longitudinal Velocity 4

'Ir8 Aircraft B Lateral Velocity 4

Lova Aircraft B Normal Velocity 4

XAYPA),ZPA Aircraft A Pilot Position 12

B r1 ,- Aircraft B Direction Cosine Matrix 36

Sln," o(OA,A<) Sine and Cosine of Aircraft A Angular Positions 24

' XAS, ZA8 Relative Position of B to A
12

L.4ACA a,4 Linear Acselerations of Aircraft A 12
I . ;- Angular Accelerations of Aircraft A 12

Total 168

Aircraft State Information Data

Airplane: XA9 YA' ZA Airplane Inertial Position 12

DCOSA Airplane Direction Cosine Matrix 36

* Each Missile: XM, YMK ZM Missile Inertial Position 12

DCOSM Missile Direction Cosine Matrix 36

36

S , a. , . .,., . . ,, b - ,,,..-.,,. , l - - ' . . . " - "

The Operations Status Data is used for the control of a simula-

tion, and indicates states such as IC, OP, Hold and Reset (these states

are defined later in the chapter). User defined flags must be included

to allow network notification of an aircraft or missile having been

destroyed, or of the failure of one of the nodes on the network. Note

that even the absence of a Status data packet will inform the rest of

the nodes of an unusual situation. It is through the use of this Status

data packet that the user ensures the integrity of the simulation.

The Terrain Board Commands are used to drive a terrain board

system, and are transmitted by the simulator controller using a terrain

board to provide visual cues. As with the LAMARS, only one simulator

can use a terrain board at a time.

Note in Table III that 4 bytes have been allocated for the real

parameters because a SEL 32/7780 word consists of 4 bytes. The total

(" number of bytes required to transfer each of the groups of data descri-

bed above are also included in Table III.

With the types of data to be transmitted defined, the sources and

destinations of these packets can be determined.

Data Packet Sources and Destinations. Each node on the FCDL

network will be capable of transmitting and receiving data packets, but

o not all will transmit and receive all four categories as defined above.

For example, there is no need for a terrain board controller to transmit

LAMARS controller data. Table IV summarizes the packets that each node

is capable of transmitting and receiving. Although five simulator

controllers are shown as being capable of transmitting terrain board

commands, again note that normally only one controller can transmit to a

terrain board during a given simulation.

35

4

real-time fidelity. Typically, the relationship between throughput and

delay is such that the higher the throughput the greater the expected

delay (Franta and Chlamtac, 1981: 59-68). Therefore, the goal is to

determine if, for the expected throughput requirement of the FCDL net-

work, the expected delay of a transmission is acceptable within a high

level of confidence. The first step is to determine the throughput

requirements of the network, and this is discussed in the following

section.

Throughput Requirements for the FCDL Network

To determine the throughput level at which Lhe FCDL network must

operate, it is necessary to study te actual data that must be trans-

* ferred during a flight simulation.

Types of Data Transmitted. The content of the data packets to be

w transmitted over the FCDL network can be divided into four major cate-

gories: LAMARS Controller Data, Aircraft State Information Data, Opera-

tions Status Data, and Terrain Board Commands. Table III summarizes the

information that each contain.

The LAMARS Controller Data, consisting of motion and visual system

inputs, will be transmitted from only one node per simulation since only

one aircraft can be simulated in LAMARS at a time.

The Aircraft State Information Data consists of the inertial posi-

tions and direction cosine matrix for each device to be tracked by other

nodes on the network, where typical devices are aircraft and missiles.

Thus, for a l-on-l combat engagement, each simulator controller would

pass the state of its aircraft to the other in order to compute relative

positions.

34

* is known as the normalized propagation delay (Franta and Chlamtac, 1981:

58, and Stallings, 1984b: 28).

Of the four parameters commonly used, the relationship between

throughput and delay is of primary concern in the analysis of the FCDL

real-time network, and is discussed further in the following section.

* Expected Delay and Real-Time Operation

Local area networks have typically been used more in an office

4 environment for the transfer of files, electronic mail, data storage,

and the like (Metcalfe and Boggs, 1976: 395-396; Shock and Hupp, 1980;

Franta and Chlamtac, 1981: 13-21). These tasks are non-real-time in

* that, as long as the task is completed within a second, the user is

*satisfied with the network's performance. Minimizing delay can only be

* accomplished while satisfying high throughput requirements, as several

I hundred users may be using the network at one time. Thus, maintainirg a

high throughput capability is of primary concern in this type of use of

a LAN.

I In a real-time application of a LAN, however, expected delay is of

primary concern. The FCDL performs flight simulations of high perfor-

mance aircraft with a human operator in the control loop, and the

typical cycle time of the digital computer performing the aerodynamic

computations is 25 milliseconds (from personal experience with FCDL

operations). Obviously, the proposed network must be able to complete a

data transmission within this 25 milliseconds, or some node(s) on the

network would have to use "old" data for the "e" cycle calculations.

Every node on the network requiring it should have new data available

every 25 milliseconds or less in order for the simulation to maintain its

33

IV. Analytical Performance Analysis of Network Hardware

This chapter presents the justification in terms of performance

for using a CSMA/CD, or Carrier Sense Multiple Access/Collision Detec-

tion, (Ethernet-like) protocol for the real-time application intended

for the FCDL. A discussion of the expected throughput requirements of

the network results in two LAN protocols, CSMA/CD and token-passing,

being the best suited to minimize data packet transmission delay. The

advantages and disadvantages of each are examinLI, with CSMA/CD emerging

as the more desirable. Finally, a prediction of the average delay a

data packet may experience using the Ethernet protocol is determined.

Network Performance Measures

Network performance is usually given in terms of three parameters

C " (Franta and Chlamtac, 1981: 58):

1) channel throughput S, the number of messages
transmitted per unit of time;

2) channel capacity C, the maximum S value achievable

with a given access protocol; and

3) the expected delay D, the time elapsing between the
generation of a message and its successful transmission.

Another parameter used to characterize LAN performance is

normalized propagation delay. If T is taken as the unit of time re-

quired for a transmitter to get an entire packet of information out onto

the medium (such as a cable), and d is the channel propagation delay

between the remotest pair of nodes on the network, then the quotient

a = (d/T) (2)

32

l-S m i I i . i i i J l . i i l i

LA MARS

NoLN- M.ET k/D)A~
INPUTS AAJD FEED-
FEEDBACK2S GACK Si6P4ALS

FPgOr1 AV'IOCIS

L AAR S

CONTPOLLEf

STATUS MOTON INPurs (24)
(/0)TU VISL'AL INP L1S (1c,8)

(/0) STATUS (/0)

ELA

Aft?'CRAFT ST7ATE DATA
6F AlkPLAA'E, ,M7,5ILES

(-40, C(, op 1-44)

STATUS (10')

(TYPICAL)

(NUMBER OF BYTES
IN pAiZEATHESES)

tlASCOtiP

FEDtACk' INPUTS

m-cs fil

Figure 8. OP, M.IN 2, Nodes Compute Own Missile Models

46

LAtIAR5

NON- NETh/O~k
/NPU7rs AND EDB DZIVE
FEEDBSACKS FEEDBACK
Fl~ob AVIONIrCS

LAM1RS

rd 7R.LER

M07-1OAI INPUTS (24)
STATUS VISUAL INPUTS (/(,S)

(o~ STATUS (IC)

ESEL A

XYF- 051ian OF ALL FOURX,Y,Z Veiocofy~ A(RCRAFT

STATUS (1o)

STATUS STATUS9\ i #

S TA TUIS

(IUBRcF BY7Ths

tltk SC 0 MP PN 1AREAJTHJE-E5)

FEEDBACK INPU'rs

tICS -02

Figure 9. First Pass IC, M+N 4, Nodes Compute Own Missile
Models

47

LArIARS
NOOJ- NETWORK

FEEDBACKS F0AK DRIVE

FROMI AVIDJICS FEOC< siC,2ALS]

[L AMAR<
CONTROLLER

STATUS ITOIoAJ ,PUrS (2,4)
(1D) VISUAL IIJPUTS () ,B)

STATUS (10)

4 SEL A

AIRCRAFT 57ATE DATA
oF AiRPLAA/E

STATUS (to)

(r reICAA)

A

I1SCN A PRN0S~

(NUMBER OF OY'TES

FEED
A

CI
INPUTS

c

Figure 10. ICP MiN 4, Nodes Compute Own Missile Models

48

LAMlARS

NOkJ- NETV/ORK
INPUTS AND kIO
FEEDBACKS FEb&4CK SICGAIALS
FROM AVIONICS

LA MARS
CONrROLLE3R

110710OV INPuTs (2-0
STATUS VISUAL IwPurS (ire)

(10) STATUS (10)

SEL A

AIRCRAFT STATE DATA
OF AIgPLAAI/(MISSILE.S

(48,96,, OR 144)

g STATLJ& (10)

(rYPICAL)

00

(NUMBER OF BYTES

IIASSCOr-P IN P1ARENTIILSES)

6FEEDDAC 4 IN~PUTS

Figure 11. OP, M4+N 4, Nodes Compute Own Missile Models

49

~i

on the amount of network throughput can be studied.

Let throughput be defined as the amount of useful data per unit

time that is transferred over the network. Normalized throughput takes

the latter quantity and divides it by the transmission rate of the

network. Therefore,

Normalized throughput = (packets/second)*(bits/packet)/Trans. Rate (3)

The number of bits per packet is 4000, and the transmission rate is

10 Mb/s. The number of packets per second is determined by dividing the

number of packets transmitted per simulation cycle by the simulation

cycle time. For M+N = 2 the number of packets per second is 3/0.025,

or 120 (each node on the network transmits one packet per cycle). For

M+N = 4, the number of packets per second is 5/0.025, or 200. Thus,

Normalized Throughput (M+N = 2) = (120*4000)/106

= 0.048 (4)

Normalized Throughput (M+N = 4) = (200*4000)/106

= 0.08 (5)

Note that smaller packet sizes would yield even smaller throughput

requirements on the network.

It is conceivable that multiple simulations could be using the

network simultaneously. Referring to Figure 4 in Chapter I, it is

observed that there are eight simulator cabs available: MCS #1, MCS #2,

MCS #3, MCS #4, LAMARS, F-Ill, T-37, and Multi-Crew. Assuming this

number will remain constant, and extrapolating the results from above,

an M+N 8 simulation could be performed and, assuming each simulator

50

Ki

cab controller could compute its own missile model, the throughput

required would be 0.0 8 x 2, or 0.16. However, the "worst case"

throughput requirement would be for four M+N =2 simulations occurring

simultaneously. In this case, the normalized throughput would be

0.048 x 4, or 0.192. In any event, then, the normalized throughput is

predicted to be some value less than 0.2.

LANs Providing Low Delay for Low Throughput

4 Having determined the throughput range within which the FCDL

network will operate, a literature survey was conducted to find

available LANs with the smallest mean data packet transmission delay

I over that throughput range. The results of the survey revealed two

protocols, CSMA/CD and token-passing, as having the best delay perfor-

mance.

I CslA/CD is the protocol used for the Ethernet specification

(Digital Equipment Corporation and others, 1980), and is being incor-

porated into the IEEE-802 standard for network protocols (Allan, 1982a).

* CSMA/CD minimizes the bandwidth wasted because of collisions by having

nodes receive and transmit in parallel, so that a comparison failure

between the transmitted and received messages signals a collision. When

a comparison failure occurs, the node sensing collision jams the channel

* to guarantee that all currently transmitting nodes sense collision.

After jamming, transmission is terminated ad reattempted after a random

delay interval.

Token-passing accessing can be used on either a bus or a ring

topology, and both methods are also being included~ in the IEEE-802

Istandard (Allan, 1982a). In the bus network, all network nodes receive

51

broadcast-type signals in any order, depending on the distance between

the transmitting and receiving nodes and on the data transmission rate.

In the ring network, individual nodes receive messages in sequence, and

not necessarily related to the physical location of the nodes in the

ring. For either topology, a token is passed from node to node. When a

node receives the token, the node strips the token of the data intended

for that node, and passes it to the next node. This procedure continues

until the token returns to the original node. Token-passing accessing

essentially provides that whichever node is holding the token has momen-

tary control over the transmission medium.

The results of work by Bux (Bux, 1981) are most representative of

the conditions undei which the FCDL network will operate. Figure 12

shows Bux's results for the mean transfer delay-throughput characteris-

tics for four protocols at 10 Mb/s assuming exponentially distributed

packet lengths (Bux, 1981: 1469-1470). CSMA/CD is shown to have the

lowest mean delay up to a normalized throughput of approximately 0.25,

but is surpassed by the token-passing (ring) protocol at higher through-

put rates. Bux's results for a constant packet length were similar

(Bux, 1981: 1470). Several other efforts describing CSMA protocols can

be found in the literature which also demonstrate characteristic good

delay performance at low throughput (Lam, 1980; Tobagi and Hung, 1980;

Vo-Dai, 1982; Stallings, 1984b; Stuck 1983; and Liu and others, 1982).

IIThe work by Lam, in fact, is used later in this chapter to predict the!

expected packet delay for the operating conditions of the FCDL network.

Other literature relating to various aspects of performance for CSMA and

its variants are also available to the interested reader (Blair and

52

100
10 MBIT/SEC

t TRANStMISI10N RATE

Z km CABLE LENGTH I
5O STATIONS

304 RINGS 1-BIT LATENCY I
V) PER STATION Iz

S20 /
IEXPON'ENTIALLY I ,

DISTRIBUTED /
PACKET LENGTHS , I

< (/"EAN 100 BIT) I / /

, 8- 2"1 BIT HEADER ' -

I/

UJ1 SLOTTED RING //1 MLMA

4 (1 SLOT)-- ORDERED-
ACCE9&,, 3 - ;"/

. "BUS

2- TOKEN RING

L CSMA/CD BUS
P II I

0.0 o.z 0.4 .; 0.8 1.0

THROUGHPUT RATE/TRANSMISSION RATE

Figure 12. Transfer Delay - Throughput
Characteristics of Four
Subnetworks (Bux, 1981: 1470)

53

I " * i,- . - -- - " " ' " - - ' "" . . . " "" '" ":

Shepherd, 1982; Shoch and Hupp, 1980; Shacham and Hunt, 1982; Metcalfe

and Boggs, 1976; Arthurs and Stuck, 1982; and Tobagi, 1982).

Based on these results and the ease with which Ethernet can be

implemented (from Chapter III), the CSMA/CD protocol is favored. Note,

however, that Figure 12 is for mean delay, meaning that some packets in

both protocols may be delayed more and some less. The advantage that

token-passing has in this regard is that an upper bound on the expected

delay of a transmission is known since the time a token takes to travel

the length of the medium is known. Collisions on a CSMA-CD network, on

the other hand, leave the determination of delays as an exercise in

statistics and probability. Therefore, before Ethernet can be chosen

with certainty, the probability of packets being delayed beyond the time

length of a simulation cycle must be examined. This topic is explored

in the next section to assist in the estimate of the total average

packet delay for the FCDL network.

Total Average Delay Prediction for Proposed FCDL Network

This section outlines a best guess as to the projected delay in

getting a data packet successfully transmitted from a node on one end of

the FCDL LAN cable to a node on the other end. Items to be addressed

include: the inherent hardware delays in an Ethernet type of LAN; an

estimate of the mean packet delay based on the operating conditions of

the FCDL network; the probability that the simulation cycle time will be

exceeded; an estimate of the protocol software overhead delay; and the

overhead imposed by an intervening High Speed Device (HSD) interface on

a Gould/SEL 32/7780.

54

Physical Channel Delay. Table V summarizes the delays to be

expected for an Ethernet LAN using devices meeting the Ethernet Specifi-

cation (Digital Equipment Corporation and others, 1980: Section 7.1.5

and Table 6A-1) and the distances anticipated for the FCDL.

Therefore, the worst-case round-trip delay is estimated to be 9.5

microseconds. Note that the forward and return paths do take different

amounts of time. This is because in one direction it is carrier sense

which is being propagated through the channel, in the return direction

it is collision detect which is being propagated, and the two signals

have different propagation delays. For the purposes of this analysis,

however, the one-way delay can be estimated by halving the round-trip

estimate. The one-way delay, d, is then 9.5/2, or 4.75 microseconds.

Ideal Data Packet Transmission Time. As with all communication

protocols, Ethernet adds overhead bits to the raw data to provide a

preamble, addressing information, data typing, and frame checks. The

total packet to be used by the FCDL will consist of the following

(assuming the 500 byte data size):

Preamble 8 bytes
Destination Address Field 6 bytes
Source Address Field 6 bytes
Type Field 2 bytes
Data Field 500 bytes
Frame Check Sequence Field 4 bytes

Total 526 bytes

Ethernet also imposes a 9.6 microsecond idle time (interframe spacing)

between transmitted frames to make sure one data packet fully propagates

along the cable before another one begins (Digital Equipment Corporation

and others, 1980: Section 6.3.2). The transmission time then becomes

55

TABLE V

Breakdown of Physical Channel Delay

Element Unit Steady- Unit Start- # Units Total

State Delay Up Delay Forward/ Delay

(micro- (micro- Return (micro-

seconds, seconds, (units seconds)

unless as noted)

noted

Encoder 0.1 0 1 1 0.2

Tranceiver

Cable 5.13 nS/m 0 50 m 50 m 0.513

Tranceiver
(Transmit
Path) 0.5 0.2 1 1 1.0

Transceiver
(Receiver
Path) 0.5 0.5 1 0 0.7

Transceiver
(Collision
Path) 0 0.5 0 1 0.5

Coax Cable 4.33 nS/n 0 240 m 240 m 2.078

Decoder 0.1 0.8 1 0 0.9

Carrier
Sense 0 0.2 2 0 0.4

Collision

Detect 0 0.2 0 2 0.4

Signal Rise

Time (to

70% in 500

meters) 0 0.1 1 0 0.1

Signal Rise
Time (50 -
94% in 500

meters) 0 2.7 0 1 2.7

Round Trip Delay 9.491

56

T =(526 bytes x (8 bits/byte) x (1 sec/10*10 6 bits))

+ 9.6*106 sec = 430.4 microseconds (6)

Note that this does not take into account channel assignment

delays caused by collision resolution and deference. Rather, this is

the mean transfer time of 500 bytes of data in the ideal Ethernet

network of no collisions, and is included here for comparison with the

more realistic transmission time, discussed below.

Mean Data Packet Transmission Time. Bux's results shown in Figure

12 were actually based on work performed by Lam (Lam, 1980). Lam devel-

oped a model of the CSM.A/CD protocol and derived expression for the mean

packet delay and a probability expression for channel assignment delay

(Lam, 1980: 27). The expression for mean packet delay, discussed in

Appendix B, is used to generate the data of Figure 13. The characteris-

B tics of the FCDL network were used in evaluating the expression. The

three packet sizes of 1000, 2000, and 4000 bits (125, 250, and 500 bytes)

were selected to show how packet size affects the mean delay. Note

that, for a given throughput, the mean delay time of a smaller packet

size is greater than that of a larger packet size. The reason for this

is the ratio of overhead bits to usable data bits is higher for a

smaller packet and, since throughput is based on the transfer of usable

data bits, a higher percentage of time on the network is spent transfer-

ring overhead bits.

The most important data to be taken from Figure 13 is the mean

delay for a 4000 bit (500 byte) packet in the throughput range fom 0 to

0.2, as this is the data packet size and throughput anticipated for use

(from earlier discussion in this chapter). Recall that the maximum

57

/0.0-

0 - 000 B/T P,4cK.T"

&.- l - 2000 8,r PACeET

A - A400o 3T PACKET

10 1frU/s TRA&S15m /CAl!

RATE
144 '31T PACKET /EADEP

EO 60 4 SiT PREAt15LE
'7.(,sec 1/VTER- ZAtE

SPACING

_ "'.U- 9.,asec SOT TYIE

2.0-

2.

0.0 0.2 0.4 0.(0.

NORMIALIZED THROIJNPUT
Figure 13. Transfer Delay - Throughput Characteristics of

Proposed FCDL Network

58

throughput requirement is 0.192. At this throughput and for a 500 byte

data packet, Figure 13 shows the mean delay to be approximately 1.04

times the ideal packet transmission time of 430.4 microseconds, or 447

mircroseconds.

Probability of Exceeding Cycle Time. The critical function of

the FCDL network is assuring that all data is transmitted over the

hardware within a simulation cycle. In that the mean packet delay has

been shown to be at most 4 percent greater than the minimum possible, it

appears that the Ethernet protocol can perform the required task. How-

ever, as one last check, Lam's channel assignment delay probability

expression (discussed in Appendix B) was used to calculate the probabil-

ity that a packet will be delayed longer than some amount of time such

that, if on the average all packets were delayed this amount of time,

the simulation cycle time would be exceeded.

Figure 14 presents the results of applying Lam's probability

expression using the characteristics of the FCDL network. The vertical

axis represents the probability of a packet being delayed longer than

time Kmax * T, where Kmax * T represents the maximum amount of time

all packets could be delayed and still be transmitted before the end of

the simulation cycle time. Again, the same three packet sizes used in

Figure 13 are shown for comparison. Note that, for a given throughput,

the probability of exceeding the cycle time for a smaller packet is

greater than that for a larger packet. The reason for this is that more p

small packets can be transmitted at a given throughput than large

packets, so there is more opportunity for collision- and deference-

related delays.

59

-A

VI. Conclusions and Recommendations

This chapter presents conclusions from the information of

Chapters I though V, and contains a recommended course of action the

Flight Contrc& Development Laboratory (FCDL) should take to complete the

implementation of the network described.

Conclusions

The need for a real-time Local Area Network (LAN) in the FCDL

flight simulation facility has resulted from the requirement to do M-on-

N piloted aircraft engagements for the Manned Combat Station (MCS)

project (where M+N is the total number of aircraft involved in th simu-

lation, less missiles), and a desire to standardize the interfaces

between computers.

Through the use of one interface board per computer, a computer

connected to a LAN can communicate real-time with any other computer

connected to the LAN via a standard protocol capable of transmiting data

at a rate fast enough to be considered real-time. Additional computers

may easily be added to the network as long as they conform to the real-

time protocol. The use of such a LAN can allow the workload of the SEL

32/7780"s during an M-on-N simulation to be distributed to peripheral

processors, which is the intent of the 14CS project. Another advantage

of a real-time LAN is the elimination of the FCDL trunking stations for

signal transmission.

To be connected to the network, a simulator cab must first have

some kind of intelligent controller capable of communicating through a

73

I

be taken into consideration when using the HSD on the SEL have also been

discussed.

The final chapter will summarize the results of this report, and

recommend a course of action for the continued development of the FCDL

network.

72

32/7780 to effectively transfer and receive data real-time to and from

the network through the HSD, it must be able to accomplish these tasks

during the real-time loop within the simulation cycle time. The SEL

32/7780 Input/Output Control System (IOCS), however, does not allow

peripheral I/O to occur during the real-time loop. Therefore, a special

IOCS must be written to "fool" the SEL 32/7780 into performing the HSD

I/0. An IOCS of this nature already exists in the FCDL to accomplish

the real-time transfer of data between the SEL 32/7780 and the

Electronics Associates Incorporated (EAI) Pacer 100 digital computers.

This IOCS enables the DDI (Digital-to-Digital Interface) in Figure 1 to

operate correctly. It is possible that the user can use this DDI IOCS

as a guide in the development of an HSD IOCS. This task is left for

future study.

Until the HSD IOCS is written and implemented, the user can

attempt to use the generic HSD data handler for a simulation as long as

all data transfers occur during the non-real-time portion of the simula-

tion cycle. The use and operation of an HSD is described in the HSD

technical manual published by SEL (Gould, 1980). This task is also left

for future study.

Summary

A software design for the control of the NIB by a host controller

has been presented and discussed in this chapter and Appendix D. With

the aid of the technical manual describing the details of the Intel

82586 Local Communications Controller (Intel, 1983), the user of the

FCDL network may implement in software the design presented. Factors to

71

cannot recover, resetting the 82586 and attempting a restart is the only

alternative. Note that, in either case, the node's absence from the

real-time simulation will be detected by the absence of transmissions

(status data) from the node. The other node(s) on the network can then

decide whether or not to continue with the simulation without the defec-

tive node. The defective node does not dangerously impact the simula-

tion because, upon detection of an error, the host ceases transmissions

and receptions and enters a hold state. Faulty data will not enter the

network, and the defective node will not receive new data. Therefore, a

transition to either RDAVS or RESET from DIAGNOSTICS #2 is possible

without causing harm to equipment or personnel.

Appendix D contains the formal software design describing the

activities the host must execute for the NIB during each of the states

described above. The user may use this design and the state diagram in

Figure 15 as a guide in the development of software code in the language

of the host.

SEL 32/7780 HSD Considerations

As mentioned in Chapter I, the interface between the SEL 32/7780

digital computer and the NIB requires the use of an RSD. This require-

ment adds some complication to the use of a SEL on the network that was

not foreseen when the idea of the network was first conceived.

The original intent for implementing the HSD for use on the net-

work was to use a generic HSD data handler written and supplied by SEL.

This data handler would allow the HSD to be treated like any other

input/output device connected to the SEL 32/7780. This latter charac-

teristic, however, is where the problem lies. In order for the SEL

70

in NIB memory, and then is transmitted out onto the network. The status

of the transmission is checked for errors by the host and, if no errors

are found, the procedure is finished. Should an error be found, a

transition is made to DIAGNOSTICS #2 as in the case of RDAVS.

The state RDAVS has priority over TDAVS since there is only one

chance to collect the data from the network, whereas the host can

retransmit a packet if necessary. Therefore, it is possible that the

state TDAVS can be interrupted by the state RDAVS when a packet arrives

at the NIB. If this occurs, the host must either save the condition it

was in at the time of the interruption (such as the location and number

of bytes left to be transferred to NIB memory, etc.), or it must restart

the transfer. This situation is depicted by the transitions between

RDAVS and TDAVS shown in Figure 15. The host may transfer data to the

NIB only when the NIB is not receiving data from the network. Further-

more, if the host is transferring data to the NIB and a packet on the

network needs to be received, control returns to RDAVS immediately until

the packet is received. Control can then transition back to TDAVS to

complete the transfer.

The state DIAGNOSTICS #2 is reached from states DIAGNOSTICS #1,

RDAVS, and TDAVS when errors occur that cannot be resolved otherwise.

DIAGNOSTICS #2 consists of the examination of the status word of the

SCB, the status word of the command last executed by the 82586, and the

execution of the 82586 Dump Status command in an attempt to locate the

cause of the error(s). If the NIB can recover from the error (that is,

if the host can resolve the error situation in the NIB), a transition

can be made to RDAVS for re-entering real-time operation. If the NIB

69

- , . • - . - 7 -w= - - - -

exited following completion of these functions, and the transition is

into the state DIAGNOSTICS #1.

Prior to entering the real-time states of data transmissions and

receptions, some diagnostic functions should be performed of which the

82586 is capable. DIAGNOSTICS #1 is the state in which the following

commands are performed: Diagnose, which tests the operation of the

82586 internal timers; Internal Loopback, which tests the transmission

and recepLion capabilities of the 82586 internal to the chip; External

Loopback, which tests the transmission and reception capabilities of the

82586 via the network transceiver; and Time Domain Reflectometer (TDR),

which examines the network cable for discontinuities. If one of these

tests is not passed and the cause of the failure cannot be determined, a

transition is made to state DIAGNOSTICS #2. If all the tests pass, and

the user desires to start the real-time simulation, a transition is made

to state Receive Data And Verify Status (RDAVS).

Up to this point, all the states for initializing, configuring,

and testing for the correct operation of the 82586 have been non-real-

time. The transition to RDAVS signifies the transition to real-time

operation. During real-time operation, the state of NIB transitions

between RDAVS and Transmit Data And Verify Status (TDAVS). During the

state RDAVS, data is stored into NIB memory as it comes in from the

network. The status of the reception is checked for errors by the host

and, if no errors are found, the data is transferred to the host.

Should an error be found, a transition is made to the non-real-time

state DIAGNOSTICS #2 for error resolution (and the NIB is essentially

taken off-line). During the state TDAVS, data from the host is stored

68

state. This state is exited by the host applying channel attention to

i the NIB.

The state INITIALIZATION is reached by the host applying an input

called "channel attention" to the NIB following RESET. The primary

function of the initialization procedure performed during this state is

to inform the NIB of the location of the 82586 System Control Block

(SCB). The SCB is a memory block that is shared by the host and the

1 82586, and forms the communication link between the host and the 82586.

The communications that occur include the issuing of commands to the

82586 by the host, and the reporting of command and operation status by

the 82586. After the initialization sequence is completed, the 82586 is

configured by default to the Ethernet specifications with broadcast

addressing (the NIB will receive any packet on the network). Should the

W ~ user decide to vary from these specifications for some reason (such as

desiring a unique address for the NIB), the 82586 can be reconfigured by

passing through the state CONFIGURE. Otherwise, the transition is to

DIAGNOSTICS #1.

CONFIGURE is the state in which the NIB can be assigned a unique

individual Address (IA), one or more 1Multicast Addresses 01A), and/or

reconfigured to some non-Ethernet specification. This state is reached

by the user who wants to perform one or more of these functions follow-

ing INITIALIZATION. Typically, this state will be visited, as it will be

6 desirable to assign a unique address to each node on the network so that

a NIB won't be bothered with packets niot intended for it. It is also

desirable to assign a NIB with multicast addresses common to other NIBs

4 so that one packet can be sent to multiple NIBs. The CONFIGURE state is

67

-4

C HA VIVEL

A7T CM TIOAlINIIITIA LIZATION
(DE FAULT: ETh'EA'AlET)

DFEFAULT 5Pr-CtrFIC COAJFt6ufAT/ol'J

CONFI6L'2ATOM O~F6ul

(TA ,t-i, cotvr6UgE)j

CHECV, 5Y!] TE W-rPITY

(DIA6AJOS, IAJ7E.&AL
XDP3AC 1 [XT-E1Z)AL

I ooJgAck' TDPZ)

DIADIAOSIOSTC. CK

COI-RAAl.qMlS lWAJ

9ECEIUETTLJ DATuTW5 AT

VERIF SWU- > < V~tFTATUT)

4r

as the details can be obtained in Intel's reference manual describing

the chip (Intel Corporation, 1983). Only the details that pertain to

the description of the software design will be included in this chapter.

The operation and capabilities of the 82586 provide the basis upon

which both the NIB and the host controller software are designed. The

NIB design was accomplished in-house, and its operation is discussed in

Appendix C. The design of the host controller software is the topic of

the next section.

Controlling the NIB for Real-Time Simulations

The control of the NIB by a host controller is basically performed

by sending commands to the 82586 and prompting the 82586 to execute

them. The types of operations that are necessary for communications on

the network, and that the 82586 is capable of performing, include:

initialization of the 82586; configuration of the 82586 (selecting the

addresses by which the NIB will be identified); operational error diag-

* nostics; data transmission; and data reception. Figure 15 presents a

0] "state diagram" representation of the suggested software design for

using the NIB for real-time simulation. The function of each state, and

the actions causing transitions to auother state, are discussed in the

* following paragraphs.

RESET is the state in which the NIB either originates upon

powering up the NIB, or it is the state to which the NIB returns upon

0 experiencing an unrecoverable error (the impact of an error on simula-

tion operation is considered in the paragraph discussing state DIAGNOS-

TICS #2). All activity performed by the 82586 ceases while in this

65

r-r z , • , ', : - - - . . , - o.
-

- r. n - -o - -o

V. A Software Design for Network Access

This chapter presents a software design for the control of the

Network Interface Board (NIB) which allows communication over an

Ethernet n-twork for real-time simulation. Following a brief descrip-

tion of the Intel 82586 Local Communications Controller and the NIB, a

diagram of the states in which the NIB can reside during a simulation is

discussed. Factors that are important to the operation of a real-time

simulation are noted. Diagrams of the activities a host controller must

perform to place the NIB in these states are contained and discussed in

Appendix D. Finally, implementation of the SEL 32/7780 HSD software

4 necessary to perform the activities is discussed.

The Intel 82586 Local Communications Controller

The Intel 82586 chip is an intelligent, high performance local

Communications Controller (LCC). It provides most of the functions

normally associated with the data link and physical link layers of a

local network architecture. Specifically, it performs frame boundary

delineation, addressing, bit error detection, link management, and data

modulation. Furthermore, the 82586 has diagnostic capability, in that

it automatically gathers statistics on CRC errors, frame alignment

errors, overrun errors, and frames lost because there was no resource to

receive them. The status of all 82586 internal registers can be dumped

to memory upon command to help in locating system faults, and the 82586

also has a time domain reflectometer that can be used to help locate

network cable faults (Intel Corporation, 1983: 1). It is beyond the

scope of this report to describe in detail the operation of the 82586,

64

.

Task Delay (msec)

SEL I/0 Software 1.0
£SEL to NIB Transfer 0.621

NIB to NIB Transfer 0.447
SEL I/0 Software 1.0
NIB to SEL Transfer 0.621

Total Delay 3.6 89

* This value is well within the 25 milliseconds cycle time, and does not

pose a threat to the fidelity of a real-time simulation.

Summary

The protocol used by the Ethernet specification, CSMA/CD, has been

shown to have sufficient delay performance for the network application

intended in the FCDL. Each packet sourced by a node on the network may

take on the order of 4 milliseconds to reach its destination, but will

___ only be on the network cable for approximately 0.5 milliseconds. As

* long as the throughput requirements placed on the network remain below

0.2 for 500 byte data packets, the transfer of all data packets within a

siulation cycle is assured with a high level of confidence. The low

utilization of the network is what assures few collisions, small delays

and real-time operation.

The next chapter will present a software design for the control of

the NIB using the Intel 82586 Local Communications Controller chip

chosen in Chapter III. This software design must be implemented for

each host controller desiring to communicate on the network.

63

'A

initial configuration of the FCDL network will have a Gould/SEL 2/7780

communicating with a MASSCOMP microcomputer. The SEL will be the

slowest device, as it must connect to a NIB through a Model 9132 High

Speed Data (HSD) Interface, and its throughput is assumed to be lower

than the MASSCOMP's I/0 throughput. Therefore, the transfer of a packet

through the HSD will be considered worst case.

According to the HSD Technical Manual (Gould, 1980), the through-

put associated with the HSD cannot be explicity defined since it is

highly dependent on the system configuration, the ISD bus priorities,

the actual data rates of the devices attached to the HSD, the cable

lengths, the number of HSD's in the system, and where in memory the data

is being processed in relation to where the CPU is executing. There-

fore, assumptions were made by the author in order to provide some

W guideline. Assuming that only memory Bus Controllers (MBC's) have a

higher SEL bus priority than HSD's, and the cable length between the HSD

and the device controller (NIB) is 20 feet to 50 feet long, then one of

two HSD's may access the same memory module as the CPU and other I/0

Devices at a maximum rate of 1.2 microseconds or 834 kilowords per

second (KW/s) each (Gould, 1980: 3-114). If this rate is achieved, the

* 518 byte packets to be used (the preamble is affixed at the NIB) will

require approximately 0.621 milliseconds to be transferred.

Packet Transfer Total Average Delay. The total estimated average

time required to transfer a packet from the memory of a SEL computer to

the memory of another SEL computer on the network (again, consider

worst-case) would be the sum of the delays discussed above:

62

• .---------- - . - .. - .-

6

The most important point to be made from Figure 14 is that the

probability of the cycle time being exceeded for the throughput range of

0 to 0.2 and 500 byte data packets is insignificant (less than 10-39).

Therefore, one can say with a high degree of confidence that the

Ethernet protocol will perform in the real-time application in the FCDL.

With the average delays in the Ethernet hardware thus established,

the remaining factors making up the total average delay in the transmis-

sion of data from one controller to another must be addressed.

Protocol Software Overhead Delay. The total delay in transmitting

a packet not only arises from inherent network hardware delays as dis-

cussed in the last few sections but also from the higher-level software

implementing the protocol. At this point in the analysis, only a best

guess can be made, as the actual delay could only be effectively deter-

mined through measurement of a working system, and/or by summing the

estimated execution times of each command in the software itself. As

the software is not yet written, an estimate will have to suffice. As

an estimate, based on discussions with personnel in the FCDL familiar

with existing system software, assume the execution of the software used

to transfer a data packet from the intelligent controller to the NIB

* takes on the order of 1.0 milliseconds.

Hardware Delay from Controller to NIB. The final portion of a

data packet's delay in reaching a destination is in its transfer from

the intelligent controller to the NIB. Just as it take time for the

packet to get transmitted from the NIB onto the network, it takes a

certain amount of time for the packet to go from the controller's memory

to the NIBs memory prior to being placed on the network cable. The

61

E] - 1000 Bit- PAcilrr

A- .4000 8/r PAcvKET

/0 t161s TeAAISNPS,0AI

9ATE
14-1 3i'rPAcklcr I-,1EAL)EP
64 3'r PREAtIBLE

9,KASec /AJTEUZA1E
-2 Sf'ACIA16

60 17S51L~ec 5Lr 7T-1E

A -

0010

*

4~ ~ ~~- -OMLZD4[RU4P

06

I

parallel port. Secondly, a network interface board, or NIB, must exist

to allow the physical connection to the network. One of the goals of

the MCS project is to design and build this NIB. The SEL 32/7780's have

the additional requirement of using a High Speed Device (HSD) interface

with the NIB. Finally, a network protocol is required to perform

communications quickly and efficiently.

The FCDL user requirements for a LAN are stated in terms of net-

work protocol requirements hardware requirements, operational require-

ments and cost constraints. The two primary requirements are that the

network have a data transfer rate of at least 10 Mb/s, and that it be

low cost. A survey of available LAN's revealed that the Ethernet proto-

col was the least costly of those meeting the transfer rate requirement.

Futhermore, its physical operating characteristics lend itself for use

in the FCDL: digital transmission; a bus topology, which is resistant

to single point failures; low bit error rate coaxial cable as the

transmission medium; easy interconnection of devices on the network; and

good reliability.

Based on its satisfactory physical operating characteristics, the

hardware necessary to implement Ethernet was selected. The Intel 82586

Local Communications Controller (LCC) and 82501 Serial I/O chip set was

selected for its capabilities in satisfying FCDL requirements, configura-

bility (should the user decide to vary from the Ethernet protocol for

some reason), and availability. Ethernet-compatible transceivers,

coaxial cable, and transceiver cable were also selected.

A performance analysis of an Ethernet LAN using the hardware

selected and the operating environment of the FCDL was conducted. The

74

performance measures of throughput and delay were of primary interest.

The goal was to determine if, for the expected throughput requirement of

iC the FCDL network, the expected delay of a transmission is acceptable

within a high level of confidence. Examination of data packet trans-

missions necessary to conduct real-time flight simulations in the FCDL

reveal that the maximum normalized throughput requirement is 0.192.

Although both token-passing and Collision Sense Multiple Access/Collis-

sion Detect (CSMA/CD, or Ethernet) protocols are shown to have low mean

packet delays for this level of throughput, CSMA/CD is lower than token-

passing. Furthermore, it is shown that, for the throughput levels

anticipated for the FCDL network, the chance of a data packet not being

transferred within the cycle time of a flight simulation is negligible

(less than 10-39). Therefore, one can say with a high level of confi-

dence that the Ethernet protocol will perform satisfactorily in the

C real-time application in the FCDL. Finally, the performance analysis

shows that the total average delay of a packet transmitted by one SEL

32/7780 and received by another over the proposed network is on the order

of 3.7 milliseconds. The transfer delay between a SEL and a MASSCOMP is

anticipated to be even shorter. This amount of delay does not pose a

threat to the fidelity of a real-time simulation having a typical cycle

time of 25 milliseconds.

The selection of the Intel chip set, the in-house design and

manufacture of a Network Inerface Board (NIB) using this chip, and the

standard operating procedure of FCDL simulations allowed a software

design and state diagram to be completed for the control of the NIB.

The software design takes into account the diagnostics capability of the

75

-w

Intel 82586 LCC to detect errors in the operation of both the chip and

the network interface. Should a node experience an error during a

simulation, the remaining nodes can detect its absence during the next

simulation cycle by the lack of packets usually received from it. In

this way these nodes can determine whether or not to continue the simu-

lation. The node in error, upon the error detection, effectively goes

into a hold state. All nodes can then be reset to try again. The user

of the network may use this software design and the state diagram as a

guide in the developmaent of software code in the langugage of the host.

The SEL 32/7780's use of the IISD requires special consideration.

* A generic data handler developed by SEL will indeed allow I/0 to occur,

but the SEL I/O Control System (IOCS) does not allow it to occur during

the real-time loop of a simulation. Therefore, a special IOCS must be

% written to "fool" the SEL into performing the HSD I/0. An IOCS of this

nature already exists in the FCDL, and is known as the Digital-to-

Digital Interface (DDI). It may be used as a guide in the development

of a new HSD IOCS. In the meantime, the generic HSD data handler can be

tested for use in a simulation as long as all data transfers occur

during the non-real-time portion of the simulation cycle.

Recommendations

Before the proposed FCDL network can be used to communicate data

between a SEL 32/7780 and a MASSCOMP, several interim steps are recom-

mended to bring it to operational status.

First, the coding of DDI-equivalent NIB control software for the

SEL 32/7780 IISD will require additional effort by the programmer as
• 0

76

-compared to the NIB control software for a MASSCOMP. The MASSCOMP data

handler will be easier to code as there is no HSD to include, and the

data handler may be written in a language such as FORTRAN. Therefore,

the FCDL could have an operational network between two MASSCOMPs rela-

tively soon in the future. Any problems with transferring data real-

time on the network can be examined and resolved by using this configur-

ation. Therefore, it is recommended that the FCDL first write the NIB

control software for the MASSCOMP.

Second, the initial attempt to connect the SEL to the network can

be made by using the generic ISD data handler written and supplied by

SEL. Although it cannot be used to transfer data during the real-time

loop of a simulation cycle, there may be enough time in the non-real-

time portion of the cycle to perform some transmissions. As the handler

does exist, its implementation may not take too much effort. If it

works, an interim solution to the problem of special DDI-equivalent NIB

control software for the HSD is found. Any general problems with the

use of the HSD on the real-time network can be resolved while implemen-

ting this data handler to ensure they don't arise when the special data

handler is implemented. Therefore, it is recommended that the FCDL

4 examine the use of the generic HSD data handler prior to writing the

special data handler.

Finally, the DDI-equivalent NIB control software for the ISD

should be written. The existence of the DDI data handler should help in

the development of the HSD data handler. Once the special handler is

completed, the network will be ready to perform real-time data transfers

between the SEL and a MASSCOMP.

77

The order of this recommended approach is based on the time anti-

cipated to be required to accomplish them, as well as on a logical

progression towards bringing the network to full operation.

78

I I

," 78

)°U

Appendix A: Expected Cost of Ethernet Connection Per Node

I The expected cost per node of making a connection to an Ethernet

* network is totalled below, based on the prices quoted or estimated for

the hardware described in Chapter III. Some of the items are divided by

twelve to indicate the distributed cost over the anticipated maximum of

twelve nodes on the network. Note that, less the cost of the wire-wrap

board and wire, the NIB components cost about $380 of the $944 estimate.

4 Note also that these prices are for the prototype NIB designed and built

in-house at the FCDL, and do not include labor costs.

Ethernet Chip Set, 1 set per node $180
ITransceiver, 1 per node $450

Coax Cable, $808/12 nodes $ 67
Transceiver Cable, $96/12 nodes $ 8
Terminators, $216/12 nodes $ 18
Coax Cable Connectors, 2 per node $ 6
Transceiver Cable Connectors, 3 per node $ 15
Additional logic for NIB, per node $200 (estimated)

Total $944

79

Appendix B: Analytical Method for Predicting

FCDL Ethernet Performance

In order to better justify the use of a CSMA/CD (Ethernet-like)

protocol for the FCDL network, some quantitative measure of the expected

message delay over the network was needed. A survey of literature

revealed work by Lam (Lam, 1980), who modeled the CSMA/CD protocol and

developed formulas for the mean message delay and mean channel assignment

delay. A relationship for the probability of the channel assignment

delay equalling an integer multiple of the slot time (twice the end-

to-end propagation delay) is also stated. These formulas are applied

using the characteristics of the FCDL network, and appropriate

assumptions.

Mean Message Delay

The mean message delay (the time from arrival of a packet to the

time it is successfully transmitted) is given by Lam (Lam, 1980: 27) as

D + + + -(

+ 2-9-IS)-t."f'/) T70 4 2(- l.')
2 L I + I7(B.1)

where

x b1 +T"

80

• _ ,4:,- ,

b, the mean of the packet transmission time
Probability Density Function (PDF)

(1 =the one-way propagation delay

T = the slot time of 2i'

S - the probability of a successful transmission

= probability of j new arrivals
in a time slot

B*(A) the Laplace transform of the packet transmission time PDF

= the arrival rate of messages to be ransmitted in packets/
second.

x2 = b2 + 2blI + 2

b2 = the second moment of the packet transmission time PDF

For the purposes of this analysis, constant packet lengths are

assumed. Therefore, bI can be defined as

bI = ((LP + LH)/V) + Interframe Spacing

where

Lp= the length of the data in bits

LH the length of the data packet header and preamble in bits

208 for Ethernet

V =the network transmission rate in bits/second

= 10 Mb/s for Ethernet

The value of Interframe Spacing is 9.6 microseconds for Ethernet.

The one-way propagation delay 7 is defined from Chapter IV as equal

to 4.75 microseconds.

The slot time T is therefore equal to 9.5 microseconds. T is the

maximum time, from the start of a transmission, required to detect a

collision. Lam's derivation is based on the consideration that time on

81

the medium is organized into these slots, and it is convenient way of

looking at activity on the network.

The probability S of a successful transmission during a contention

period is assumed to be l/e, which is the optimum slotted throughput

rate for an infinite population model. Stallings (Stallings, 1984: 31-

32) discusses the suitability of this assumption.

B*(A) for the case of constant packet lengths is equal to one since

the Laplace transform of a unit impulse function is one.

The value of b2 is zero as it is the second moment of a constant

value.

The value of x2 is assumed to be zero since the value of b2 is zero,

and the last two terms are on the order of 10- 9 and 10-11 respectively.

Using equation (B.1) and the above assumptions, the normalized

delay and throughput were calculated for packet sizes of 1000, 2000, and

4000 bits (125, 250, and 500 bytes) at different values of ?. The data

is tabulated in Tables B.1, B.2, and B.3.

Channel Assignment Delay Probability 7

As Ethernet is probabilistic in the actual delay a packet will

experience, some measure is needed of the probability that all packets

will be transmitted within a simulation cycle. A formula stated by Lam

(Lam, 1980: 27) gives the probability of the mean channel assignment

delay equalling an integer multiple of the slot time:

P-I4 K T3 [Q , ; ,2.. (B.2)

82

-- - - .-- , ~ . .

where

TZS)

and

Using equation (B.2), an expression can be derived for determining the

probability that a packet will be delayed greater than some integer

multiple of the slot time such that, if every packet in the cycle time

is delayed that amount, the cycle time is exceeded.

First, an expressiL relating the time remaining in a simulation

cycle to the arrival rate and the packet size must be stated. This

expression is

. l-XT
A(B.3)

The "integer multiple of T" delay that each packet can incur before the

simulation cycle is exceeded is then

KNAX = AT[1-1r-J (B.4)

Then, the probability that a packet will be delayed greater than Kmax
*T

can be given, after some simplification, by:

83

p~obLd>A TJ ,_ 7_ (B.5)

Values of Kmax and Prob[d>Kmax*T were calculated for packet sizes of

1000, 2000, and 4000 bits (125, 250, and 500 bytes) at different values

of A. The data is tabulated in Tables B.1, B.2, and B.3.

84

TABLE B.1

Normalized Delay and Probability of Delay

for 125 Byte Data Packet

(Mean Transmission Time b 0.1304 msec)

D Kma x D/b 1 Prob.
(packets/sec) (msec)

120 0.1403 863 1.076 < 10-3 9 0.012

200 0.1407 512 1.079 0.020

500 0.1419 196 1.088 0.050

1000 0.1444 91 1.107 0.100

2000 0.1511 38 1.159 7.780*10 - 9 0.200

3000 0.1621 21 1.243 2.939*10 - 5 0.300

4000 0.1834 12 1.406 2.487*10 -3 0.400

5000 0.2401 7 1.841 3.153*10-2 0.500

5500 0.3284 5 2.518 8.784*10- 2 0.550

6000 0.8334 3 6.391 2.427*10 -1 0.600

85

r m I' ' I - :L i ~ IIWIIII I -I I JII i I~
i -

- " - - " -A

TABLE B.2

Normalized Delay and Probability of Delay

for 250 Byte Data Packet

(Mean Transmission Time bI = 0.2304 msec)

SKma x D/bI Prob. Lp

(packets/sec) (msec) tr

120 0.2407 852 1.045 < 10- 3 9 0.624

200 0.2412 502 1.047 " 0.040

500 0.2435 186 1.057 " 0.100

1000 0.2485 81 1.079 " 0.200

1500 0.2557 45 1.110 1.855*10- 10 0.300

2000 0.2668 28 1.158 1.325*10-6 0.400

2250 22 2.349*10 - 5 0.450

2500 0.2864 17 1.243 2.601*10-4 0.500

3000 0.3296 10 1.430 7.826*10-3 0.600

3500 0.5034 5 2.185 9.149*10-2 0.700

3750 1.387 3 6.023 2.467*10-1 0.750

86

TABLE B.3

Normalized Delay and Probability of Delay

for 500 Byte Data Packet

(Mean Transmission Time b1 0.4304 msec)

D 1Snax D/b1 Prob. L

(packet/sec) (Insec) IT

120 0.4414 831 1.025 < 10-39 0.048

200 0.4424 481 1.028 If0.080

250 0.4432 375 1.030 It0.100

500 0.4474 165 1.039 It0.200

750 0.4531 95 1.053 it0.300

1000 0.4614 59 1.072 It0.400

1250 0.4741 38 1.102 1.512*10- 8 0.500

1500 0.4965 24 1.153 1.129*10- 0.600

1625 19 1.215*10- 0.650

1750 0.5455 14 1.267 1.300*10-3 0.700

2000 0.7393 7 1.718 3.704*10- 2 0.800

2125 1.657 4 3.849 1.562*10-1 0.850

2150 3.265 3 7.585 2.502*10-± 0.860

87

7 D-Ai52 242 DESIGN AND SPECIFICATION OF A LOCAL AREA NET dORI(2/3
I ARCHITECTURE FOR USE IN..(U) AIR FORCE INST OF TECH
I NRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. L R MAKI
UNLSSFE SEP 84 RFIT/GCS/ENG/84S-3 F/U 9/5 M

4C

.158

MI kO(OP FR SOL t (jN IT(, I C HART

4

Appendix C: The Network Interface Board (NIB)

The network Interface board (NIB), designed by Lt. Richard Benken

of the FCDL (Benken, 1984), acts as an interface between a host computer

and an Ethernet LAN. It is based on two chips manufactured by Intel

(the 82586 Local Communications Controller and the 82501 Ethernet Serial

Interface) and a level switching driver (the 3Com transceiver). A block

diagram of the prototype NIB is shown in Figure C.1. A more complete

description of the functions provided by the 82586 and the 82501 can be

found in Intel technical publications (Intel Corporation, 1982; and

Intel Corporation, 1983). Basically, the two-chip set embody the

CSMA/CD communications protocol of the Ethernet specification 1.0 (Digi-

tal Equipment Corporation and others, 1980), along with some diagnostics

features. The remainder of this chapter provides a brief overview
of

the function of the NIB.

Basic Host-NIB Communications

The host computer communicates with the 82586 controller chip on

the NIB not directly, but through a buffer memory located on the NIB.

All data going into, and coming out from, the network passes through

this memory. Furthermore, all commands to the 82586 from the host

reside in this memory as well. On output, the host computer supplies a

starting address and pulses a control line causing the NIB to step

through the buffer memory addresses and fill the buffer memory with

commands and data. The 82586 controller chip is then signalled to act

88

I!

Li*I XJ

-CI

19:

KA 0

0

V)U

4

Zt1-

'A -4

00 0

89

upon these commands and data. On input, the 82586 fills the buffer

(I memory (initialize by the host computer) with received data packets, and

then signals the host computer of the reception. The host computer then

accesses the buffer memory and pulses the data into its own memory.

Bus arbitration between the host computer and the 82586 is handled

by giving the 82586 access to the bus at the end of any host computer

memory cycle, whether or not the host computer has completed all

transfers. If the 82586 does steal the bus, it signals the host computer

through a control line. The host computer can then request the bus once

again through another control line, and will be given control as soon as

the 82586 finishes with its transfers.

NIB to Host Interface

The goal in the design of the NIB was to keep it generic enough to

allowing interfacing to any device having a parallel port. The inter-

face between the host and the NIB consists of 16 bidirectional

data/address lines, and 8 control lines. The function of each control

line is briefly described below.

RESET (input to NIB) - resets the 82586 and all necessary NIB
internal logic to bring the NIB to a predetermined state.

INT (output from NIB) - signals the host processor of an error,
receipt of data, or transmission of data.

D/A (input to NIB) - specifies whether the 16 bits on the
bidirectional lines constitute data or an address.

R/W (input to NIB) - specifies whether to read or write. Together
with the pevious input, D/A, four functions are specified:

- write data

- read data
- write address

4 - channel attention (a host to 82586 prompt)

90

I % ..

DSSTR (input to NIB) - the data synchronization strobe has a dual
purpose depending on whether the NIB is being read from or written
to. In the read mode, it signals the NIB to output the data at

Ithe next sequential address. In the write mode it signals the NIB
to strobe in the data on the bus into the present memory address
location and then increment the address to the next sequential
location.

BUSR (input to NIB) - signals the NIB that the host computer
requests control of the bus.

BUSAV (output from NIB) - informs the host computer of the current
status of bus availability; either the 82586 has control. or the
host has control. Since the 82586 has priority control, and can
make ownership of the bus in the middle of a host transfer, the
line is designed to immediately inform the host of such a change.

DACK (output from NIB) - the data acknowledge line has a dual
purpose depending on whether the NIB is being read from or written
to. In the read mode, it asserts a pulse while the NIB holds the
data valid. In the write mode, it's pulse acknowledges receipt of
the data or address.

NIB to Network Cable Interface

Using the Intel 82501 Ethernet Serial interface chip on the NIB,

any Ethernet-compatible transceiver cable hardware can be used to inter-

face the NIB to an Ethernet transceiver, and thus, the cable. The

network hardware specified in Chapter II will be used for the FCDL

network.

91

Appendix D: NIB Operations Control SADT Actigrams

This appendix presents the software design for the control of the

NIB by an intelligent controller. The format adopted to present the

design is the Structured Analysis and Design Technique (SADT) developed

by SofTech (Softech, 1976). Included in the appendix are: a node index

in Table D.1; a complete set of actigrams in index order, each with a

page of explanatory text; and a data dictionary, Table D.2, defining the

terms used in the actigrams.

It is assumed the reader is either familiar with the operation of

the Intel 825E6 Locel Communications Controller, or has access to the

technical manual describing its operation (Intel, 1983).

92

I!

II

92

TABLE D.1

r Node Index

Page

A-0 NIBOC -Network Interface Board Operations Control 97
jAO NIBOC -Network Interface Board Operatins Control 99

Al Initialize NIB........................101
All Set Up 82586 SCP 103

AMl Reset NIB
A112 Specify SCB Address
A113 Load SCP Data Structure

A12 Set Up 82566 ISP 105
A121 Specify ISCP Address
A122 Load ISOP Data Structure

A13 Initialize 82586
A2 ConfigureNIB 107

A21 Select Individual Address. 109
*A211 Specify CBL Address

A212 Load IA Command in CBL
A213 Specify SCB Address
A214 Load SCB Data Structure
A215 Perform IA Command

A22 Select Multicast. Address.......
A221 Specify CBL Address
A222 Load MA Command in CBL
A223 Specify SCB Address
A224 Load SCB Data Struicture
A225 Perform MA Command

A23 Select Configuration 113
*A231 Specify CBL Address

A2.32 Load Configure Command in CBL
A233 Specify SCB Address
A234 Load SCB Data Structure
A235 Perform Configure Command

A3 Diagnose NIB/Network System. 115
* A31 Perform 82586 Diagnose 117

A311 Execute 82586 Diagnose 119
A3111 Specify CBL Address
A3112 Load Diagnose Command in CBL
A3113 Specify SCB Address
A3114 Load SCB Data Struture

*A3115 Perform Diagnose Command
A312 Transfer Results to Host 121

A3121 Specify Start Address of Data
A3122 Read Data to Host

A32 Perform Internal Loopback. 123
A321 Perform Internal Loopback Set Up and Execution * 125

A3211 Construct Internal Loopback CBL 127

93

TABLE D.1

Node Index (Continued)

Page

A32111 Construct Internal Loopback CBL
A32112 Load Internal Loopback Configure and

Transmit Comnands in CBL

A3212 Prepare Transmission Data Structures 129
A32121 Specify Transmit Buffer Descriptor

Address

A32122 Load Transmit Buffer Descriptor Data

Structure
A32123 Specify Data Buffer Address
A32124 Load Data Buffer

A3213 Prepare Reception Data Structures 131
A32131 Specify Receive Frame Descriptor

Address

A32132 Load Receive Frame Descriptor Data

Structure
A32133 Specify Receive Buffer Descriptor

Addxess
A32134 Load RBD Data Structure

A3214 Prepare SCB and Execute Internal Loopback . . 133

A32141 Specify SCB Address

A32142 Load SCB Data Structure
A32143 Execute Internal Loopback CBL

A322 Transfer Results to Host 135

A33 Perform External Loopback 137
A331 Perform External Loopback Set Up and Execution . . . 139

A3311 Construct External Loopback CBL 141
A33111 Specify CBL Address
A33112 Load External Loopback Configure and

Transmit Commands in CBL

A3312 Prepare Transmission Data Structures 143
A3313 Prepare Reception Data Structures 145
A3314 Prepare SCB and Execute External Loopback . 147

A33141 Specify SCB Address

A33142 Load SCB Data Structure
A33143 Execute External Loopback CBL

A332 Transfer Results to Host 149
A34 Perform TDR Test 151

A341 Execute 82586 TDR. 153
A3411 Specify CBL Address

A3412 Load TDR Command in CBL
A3413 Specify SCB Address

A3414 Load SCB Data Structure
A3415 Perform TDR Command

A342 Transfer Results to Host 155

94

TABLE D.1

Node Index (Continued)

Page

A Receive/Transmit Data 157
A41 Receive Network Data. 159

A411 Prepare Reception Data Structures 161
A4111 Specify Frame Descriptor Address
A4112 Load Receive Frame Descriptor Data Structure
A4113 Specify Receive Buffer Descriptor Address
A4114 Load RBD Data Structure

A412 Prepare SCB Start RU. 163
A4121 Specify SCB Address
A4122 Load SCB Data Structure
A4123 Start RU

A413 (Receive Data)
A414 Transfer SCB Status to Host 165

A4141 Specify Start Address of SCB Status Data
A4142 Read SCB Status Data to Host

A415 Transfer Received Data to Host 167
A4151 Specify Start Address of Received Data
A4152 Read Received Data to Host

A42 Transmit Network Data 169
A421 Construct Transmit CBL. 171

A4211 Specify CBL Address
A4212 Load Transmit Commands in CBL

A422 Prepare Transmission Data Structures. 173
A4221 Specify Transmit Buffer Descriptor Address
A4222 Load Transmit Buffer Descriptor Data Structure
A4223 Specify Data Buffer Address
A4224 Load Data Buffer

A423 Prepare SCB and Execute Transmit. 175
A4231 Specify SCB Address
A4232 Load SCB Data Structure
A4233 Perform Transmit Command

A424 Transfer Transmit Command Status to Host. 177
A4241 Specify Start Address of Transmit Command

Status Data
A4242 Read Transmit Command Status Data to Host

AS Diagnose NIB Errors.........................179
A51 Transfer SCB Status to Host 181

A511 Specify Start Address of SCB Status Data
A512 Read SCB Status to Host

A52 Transfer Command Status to Host 183
A521 Specify Start Address of Command Status Data
A522 Read Command Status Data to Host

A53 Perform Dump Status 185
A531 Execute 82586 Dump Status 187

95

TABLE D.1

Node Index (Concluded)

Page

A5311 Specify CBL Address

A5312 Load Dump Status Command in CBL
A5313 Specify SCB Address
A5314 Load SCB Data Structure

A5315 Perform Dump Status Command
A532 Transfer Results to Host 189

96

" " I

A-O NIBOC - Network Interface Board Operations Control

Abstract: This diagram is the environment node.

At this level, NIBOC is seen as a complete system. Inputs include
commands and data from the host computer, and data received from the
network. Control inputs consist of: parallel port controls from the
host other than requesting the NIB bus; a reset input for resetting the
NIB; a prompt from the host called channel attention; and a bus request
input. Outputs include: parallel port controls to the host; an
interrupt signal sent to the host; a bus available signal sent to the
host; data to the host; and data to the network.

97

. . . . _ - LL .-

I-.

cm1

kQ

98 0

AO NIBOC -Network Interface Board Operations Control

Abstract: This diagram is the entire system decomposed along the five
major functions of the system: Initialization, Configuration, System
Diagnostics, Data Exchange, and Error Diagnostics. The execution of
each activity is sequential, and activity Receive/Transmit Data is the
primary activity during real-time operation. Note that control passes
between the last two activities as errors occur.

Implementation details are shown to be functionally separated into
five distinct processes. Initialization accepts commands and data from
the host computer via parallel port control and bus request inputs,
receives prompts reset and channel attention from the host, and
performs the activity Initialize NIB. This activity generates parallel
port control outputs to the host, tells the host the bus is available,
and outputs an interrupt to the host signalling activity completion.

Configuration performs the activity Configure NIB, which takes
comm~ands and data from the host computer via parallel port and control
and bus request inputs, receives a channel attention prompt from the
hostk-, and performs the activity Configure NIB. This activity generates
parallel port control outputs to the host, tells the host the bus is
available, and outputs an interrupt to the host signalling activity
completion.

System Diagnostics takes commands and data from the host computer
and data from the network, along with parallel port, bus request, and
channel attention prompts from the host, and performs the activity
Diagnose NIB/Network System. This activity generates parallel port
control outputs to the host, tells the host of bus availability,
outputs data to the host, and outputs an interrupt to the host
signalling activity completion.

Network Data Exchange takes commands and data from the host and
data from the network, along with parallel port, bus request, and
channel attention prompts from the host, and performs the activity
Receive/Transmit Data. This activity generates data to the host, data
to the network, parallel port control outputs to the host, tells the
host of bus availability, and outputs interrupts to the host signalling
activity completion. The interrupt output is also used to control
transfer of activity between Network Data Exchange and Error
Diagnostics.

Error Diagnostics takes commands and data from the host computer
via parallel port, bus request, channel attention, and interrupt
prompts from the host, and performs the activity Diagnose NIB Errors.
This activity generates data to the host, tells the host of bus
availability, outputs parallel port controls to the host, and outputs
interrupts to the host signalling activity completion. The interrupt
output is also used to control transfer of activity between Network
Data Exchange and Error Diagnostics.

99

A23 Select Configuration

Abstract: This diagram decomposes the activity Select Configuration
into its major functions.

Select Configuration requires the host to create in NIB memory a
Command Block List (CBL) containing the Configure command. The 82586
System Control Block (SCB) is then prepared so that , when channel
attention is applied, the 82586 knows to execute the Configure command.
Execution of A231, A232, A233, A234, and A235 is sequential and is
implied by their positioning from upper left to lower right. The bus
available output from each activity is an indication as to whether or
not the 82586 has taken control of the NIB bus. During the activity
Select Configuration, the 82586 does take control as it executes the
command. However, the host is not asking for the bus at this time, so
there is no contention.

A231 (Identical to activity A211)
A232 Load Configure Command In CBL loads the Configure

parameters shown as inputs into the CBL located by activity A231.
After requesting the bus, the host loads the Configure command
parameters (according to the Configure command data structure) into the
CBL via the parallel port controls write, data, and data strobe. The
82586 responds with data acknowledgements.

A233 (Identical to activity A213)
A234 Load SCB Data Structure loads the SCB parameters shown into

the SCD data structure at the address specified in A233. After
requesting the bus, the host loads this data into the SCB data
structure via the parallel port controls write, data, and data strobe.
tote that the interrupt from either activity A13, activity A215, or
activity A225 (whichever one preceeded A23) must be acknowledged in the
input ACK. The 82586 responds to this activity with data
acknowledgements.

A235 Perform Configure Command is the execution of the Configure
command by the 82580. It is begun by the host applying channel
attention to the NIB. The NIB responds with an interrupt when command
execution is completed (if the I bit is set in the Configure CBL).

Again, the execution of these activities must be in the order
A231, A232, A233, A234, A235.

113

d

C9'

j CY

In cl LI

-J LJ

CK

1124

A22 Select Multicast Addresses

Abstract: This diagram decomposes the activity Select Multicast
Addresses into its major functions.

Select Multicast Addresses requires thehost to create in NIB
memory a Command Block List (CBL) containing the Multicast Address (MA)
command. The 82586 System Control Block (SCB) is then prepared so
that, when channel attention is applied, the 82586 knows to execute the
MA command. Execution of A221, A222, A223, A224, and A225 is
sequential and is implied by their positioning from upper left to lower
right. The bus available output from each activity is an indication as
to whether or not the 82586 has taken control of the NIB bus. During
the activity Select Multicast Addresses, the 82586 does take control as
it executes the command. However, the host is not asking for the bus
at this time so there is no contention.

A221 (Identical to activity A211)
A222 Load MA Command In CBL loads the MA parameters shown as

inputs into the CBL located by activity A221. After requesting the
bus, the host loads the MA command parameters (according to the MA
command data structure) into the CBL via the parallel port controls
write, data, and data strobe. The 82586 responds with
acknowledgements.

A223 (Identical to activity A213)
A224 Load SCB Data Structure loads the SCB Parameters shown into

the SCB data structure at the address specified in A223. After
requesting the bus, the host loads this data into the SCB data
structure via the parallel port controls write, data, and data strobe.
Note that the interrupt from either activity A13 or activity A215
(whichever one preceeded A22) must be acknowledged in the input ACK.
The 82586 responds to this activity with data acknowledgements.

A225 Perform MA Command is the execution of the MA command by
the 82586. It is begun by the host applying channel attention to the
NIB. The NIB responds with an interrupt when command execution is
completed (if the I bit is set in the MA CBL).

Again, the execution of these activities must be in the order
A221, A222, A223, A224, A225.

111

CX

I-
C

00

0 lc
Ll

In

0 k
-J W

KL

,-i ~NJ .-

cnNoc:~ ~vi

I--j

0 110

A21 Select Individual Address

Abstract: This diagram decomposes the activity Select Individual
Address into its major functions.

Select Individual Address requires the host to create in NIB
memory a Command Block List (CBL) containing the Individual Address
(IA) command. The 82586 System Control Block (SCB) is then prepared so
that, when channel attention is applied, the 82586 knows to execute the
IA command. Execution of A211, A212, A213, A214, and A215 is
sequential and is implied by their positioning from upper left to lower
right. The bus available output from each activity is an indication as
to whether or not the 82586 has taken control of the NIB bus. During
the activity Select Individual Address, the 82586 does take control as
it executes the command. However, the host is not asking for the bus
at this time so thcre is no contention.

A211 Specify CBL Address is performed by the host prior to
loading data into the address specified. After requesting the bus, the
host applies the CDL address to the parallel port via the write and
address controls. The 82586 responds with data acknowledge.

A212 Load IA Command In CBL loads the IA parameters shown as
inputs into the CBL located by activity A211. After requesting the
bus, the host loads the IA command parameters (according to the IA
command data structure) into the CBL via the parallel port controls
write, data, and data strobe. Tie 82586 responds with
acknowledgements.

A213 Specify SCB Address is performed by the host prior to
loading data into the SCB. After requesting the bus, the host applies
the SCB address to the parallel port via the write and address
controls. The 82586 responds with data acknowledge.

A214 Load SCB Data Structure loads the SCB parameters shown into
the SCB data structure at the address specified in A213. After
requesting the bus, the host loads this data into the SCB data
structure via the parallel port controls write, data, and data strobe.
Note that the interrupt from activity A13 must be acknowledged in the
input ACK. The 82586 responds to this activity with acknowledgements.

A215 Perform IA Command is the execution of the IA command by
the 82586. It is begun by the host applying channel attention to the
NIB. The NIB responds with an interrupt when command execution is
completed (if the I bit is set in the IA CBL).

Again, the execution of these activities must be in the order
A211, A212, A213, A214, A215.

1

109 -A

c) 0

C.

C.-

KKZ

108

A2 Configure NIB

Abstract: This diagram decomposes the activity of Configuration into
its major functions.

Configuration is composed of activities'which give the NIB its
identity and tailor its operation to variations of the Ethernet
protocol. Although the order of execution of the activities A21, A22,
and A23 is implied by the interrupt output of one activity feeding in
as a control input on the next activity, the execution can be in any
order. Hno%%lover, activity Select Individual Address must be
accomplished to ensure the NIB of an identity. The bus available
output from each activity is an indication as to whether or not the
82586 has taken control of the NIB bus. During the activity Configure
NIB, the 82586 does take control of the bus during the execution of the
commands. Howiever, the host is not asking for the bus at these times,
so there is no contention. The interrupt output from each activity is
typically the result of the host setting the interrupt bit in a command
to the 82586, although it could be the result of an error. For either
reason, the interrupt must be acknowledged by the host before the next
activity can be completed. Therefore, interrupt is shown as a control

4 on each activity.
A21 Select Individual Address assigns a unique (up to) 6 byte

address to the NIB. It uses this address to identify data packets
intended for it, and to indicate the source of data packets sent by it.
After requesting the bus, the host uses parallel port controls to input
commands and data for executing this activity. The NIB responds with

I ~ parallel port controls while accepting commands and data, and signals
an interrupt when finished.

A22 Select Multicast Addresses, in a manner similar to Select
Individual Addresses, assigns one or more addresses by which the NIB
can be identified. After requesting the bus, the host uses parallel
port controls to input commands and data for executing this activity.
The NIB responds with parallel port controls while accepting commands
and data, and signals an interrupt when finished.

A23 Select Configuration handles the setting of parameters which
vary the protocol from the default Ethernet standard. After requesting
the bus, the host uses parallel port controls to Input commands and
data for executing this activity. The NIB responds with parallel port

.4 controls while accepting commands and data, and signals an interrupt
when finished.

Again, the sequence of these activities is not important, but the
execution of Select Individual Address is the minimum requirement.

107

ioz

LAA

100

A12 Set Up 82586 ISCP

Abstract: This diagram decomposes the activity Set Up 82586 ISCP into
its major functions.

Set Up 82586 ISCP requires the specification of the ISCP starting
address, and the loading of the data into the ISCP data structure.
Execution of A121 and A122 is sequential and is implied by their
positioning from upper left to lower right. The bus available output
from each activity is an indication as to whether or not the 82586 has
taken control of the NIB bus. During the activity Set Up 82586 ISCP,
the 82586 does not ever take control as it is still being prepared.

A121 Specify ISCP Address is performed by the host to notify the
82586 of the location of the ISCP data structure. After requesting the
bus, the host applies the ISCP address to the parallel port via the
write and address controls. The 82586 responds with data acknowledge.

A122 Load ISCP Data Structure loads the values of Busy, SCB
Offset, and SCB Base into the ISCP. After requesting the bus, the host
loads this data into the ISCP data structure via the parallel port
controls write, data, and data strobe. The 82586 responds with
acknowledgements.

10

6

105

-rr\

~kA

'K4

Lj 4.

CQ 00

104

U&No

All Set Up 82586 SCP

Abstract: This diagram decomposes the activity Set Up 82586 SCP into
its major functions.

Set Up 82586 SCP requires the resetting of the 82586,
specification of the SCP starting address, and the loading of the data
into the SCP data structure. Execution of A111, A112, and A113 is
sequential and is implied by the their positioning from upper left to
lower right. The bus available output from each activity is an
indication as to whether or not the 82586 has taken control of the NIB
bus. During the activity Set Up 82586 SCP, the 82586 does not ever
take control as it is still being prepared.

AM11 Reset NIB is a function handled by the 82586 and initiated
by the host applying reset to the NIB. It prepares the 82586 for the

4 remaining steps in initialization.
A112 Specify SCP Address is performed by the host to notify the

82586 of the location of the SCP data structure. After requesting the
bus, the host applies the SCP address to the parallel port via the
write and address controls. The 82586 responds with data acknowledge.

A113 Load SCP Data Structure loads the values of Sysbus and the
location of the ISCP into the SCP. After requesting the bus, the host
loads this data into the SCP data structure via the parallel port
controls write, data, and data strobe. The 82586 responds with
acknowledgements.

103

LLI

C4 -Jabo -
4.

0c
w-

ok
CC

-J c1n

on

vi-

010

Al Initialize NIB

Abstract: This diagram decomposes the activity of Initialization into
its major functions.

Initialization requires the preparation of two 82586 data
structures, the System Configuration Pointer (SCP) and the Intermediate
System Control Pointer (ISCP). Execution of All, A12, and A13 is
sequential and is implied by their positioning from upper left to lower
right. The bus available output from each activity is an indication as
to whether or not the 82586 has taken control of the NIB bus. During
the activity Initialize NIB, the 82586 does take control as it does the
initialization (activity A13). However, the host is not asking for the
bus at this time so there is no contention.

All Set Up 82586 SCP handles the preparation of the 82586 SCP by
the host computer. After applying a reset, the NIB bus is requested by
the host. Appropriate commands and data are issued to the 82586 SCP
via parallel port controls to and from the host.

A12 Set Up 82586 ISCP handles the preparation of the 82586 ISCP
by the host computer. The NIB bus Is first requested by the host, and
then appropriate commands and data are issued to the 82586 ISCP via
parallel port controls to and from the host.

A13 Initialize 82586 is the actual execution of the 82586
initialization process internal to the 82586. Channel attention is
applied by the host, and the 82586 indicates completion via the
interrupt output.

101

. .. . I~+..

4t

4C

c-)4

tj0

L4.

LI:

100

.

C~C'

~ 0 U0

C('C

C--J

11

A3 Diagnose NIB/Network System

Abstract: This diagram decomposes the activity of System Diagnostics
(into its major functions.

System Diagnostics is composed of activities which test the
operation of the 82586 and the integrity of the network. Although the
order of execution of the activities A31, A32, A33, and A34 is implied
by the interrupt output of one activity feeding in as a control input
on the next activity, the execution can be in any order. However, the
order as shown is recommended since additional hardware is tested at
each step. The bus available output from each activity is an
indication as to whether or not the 82586 has taken control of the NIB
bus. During the activity A3, the 82586 does take control of the bus
during the execution of the commands. However, the host is not
actively asking for the bus at these times, so there is no contention.
The interrupt output from each activity is typically the result of the
host setting the interrupt bit in a command to the 82586, although it
could be the result of an error. For either reason, the interrupt must
be acknowledged by the host before the next activity can be completed.
Therefore, interrupt is shown as a control on each activity.

*A31 Perform 82586 Diagnose executes a diagnostic test of the
82586 internal timer hardware. After requesting the bus, the host uses
parallel port controls to input commands and data for executing this
activity. The NIB responds with parallel port controls while accepting
commands and data. The host starts command execution by applying
channel attention, and the NIB signals an interrupt when finished with

C ~ command execution. The results of the test are then collected by the
host for analysis.

A32 Perform Internal Loopback executes a diagnostic test of the
transmission and reception functions of the 82586 internally. The
description of the inputs and outputs is the same as for A31. The
results of the test are then collected by the host for analysis.

*A33 Perform External Loopback executes a diagnostic test of the
transmission and reception functions of the 82586 for a frame limited
to 18 bytes. Unlike activity A32, however, activity A33 allows the
checking of external hardware as well as the serial link to the
transceiver. The description of the inputs and outputs is the same as
for A31. During command execution, data from the network (the data
sent by the NIB) is received by the NIB. The results of the test are
then collected by the host for analysis.

A34 Perform TOR Test executes a time domain ref lectometer test
on the serial link. By performing the test, shorts or opens on the
network serial link, and their location, can be identified. The
description of the inputs and outputs is the same as for A31. During
command execution, data from the network (the reflected signals, if
any) is received by the NIB. The results of the test are then
collected by the host for analysis.

Again, the order of execution of activities A31, A32, A33, and A34
is not important, but the order shown is recommiended.

115

44,

I,

co -5

-Q

U, ~- I t 2
-' -2:

116

A31 Perform 82586 Diagnose

Abstract: This diagram decomposes the activity Perform 82586 Diagnose
(into its major functions.

Perform 82586 Diagnose is composed of activities which set up and
execute the 82586 diacrnose command and transfer the results to the
host. The order of execution of activities A311 and A312 is sequential
as implied by their positioning from upper left to lower right.

A311 Execute 82586 Diagnose performs the internal 82586 timer
test. After requesting the bus, the host uses parallel port controls
to input commands and data for executing this activity. The host must
also acknowledge the interrupt (shown as a control input) that was
generated by the NIB upon completion of a previous activity (such as
A235). Tho NIB responds with parallel port controls while accepting4 commands and data. The host starts command execution by applying
channel attention, and the NIB signals an interrupt when finished with
command execution. The bus available output from this activity is an
indication as to whether or not the 82586 has taken control of the NIB
bus. During the activity Execute 62586 Diannose, the 82586 does take
control of the bus during the execution of the commands. However, the

* host is not actively asking for the bus at these times, so there is no
contention. The interrupt output from this activity is typically the
result of the host setting the interrupt bit in the command to the
82586, although it could be the result of an error. For either reason,
the interrupt must be acknowledged by the host before the next activity
prompted by a channel attention can be completed.

A312 Transfer Results To Host handles the movement of data from
the 141B memory to the host. After requesting the bus, the host uses
parallel port controls to input the starting address of the data to be
transfcrred and to step through the NIB memory. The NIB responds with
parallel port controls to the host for synchronization, and with the
data. The bus available output is an indication as to whether or not
the 82586 has taken control of the NIB bus. During the activity
Transfer Results To Host, the 82586 does not ever take control, so
there is no contention problem.

Again, the execution of these activities must be in the order
A311, A312.

117

LU

00

KG

4 N~rq~i-

aeK

CC-

4 K118

A311 Execute 82586 Diagnose

C Abstract: This diagram decomposes the activity Execute 82586 Diagnose
into its major functions.

Execute 82586 Diagnose requires the host to create in NIB memory a
Command Block List (CDL) containing the Diagnose command. The 82586
System Control Block (SCB) is then prepared so that, when channel
attention is applied, the 82586 knows to execute the Diagnose command.
Execution of A3111, A3112, A3113, A3114, and A3115 is sequential and is
implied by their positioning from upper left to lower right. Tile bus
available output from each activity is an indication as to whether or
not the 82586 has taken control of the NIB bus. During the activity
Execute 82586 Diagnose, the 82586 does take control as it executes theI command. However, the host is not asking for the bus at this time, so
there is no contention.

A3111 (Identical to activity A211)
A3112 Load Diagnose Command In CDL loads the Diagnose parameters

shown as inputs into the CBL located by activity A3111. After
requesting the bus, the host loads the Diagnose command parameters
(according to the Diagnose command data structure) into the CBL via the
parallel port controls write, data, and data strobe. The 82586
responds with data acknowledgements.

A3113 (Identical to activity A213)
A3114 Load SGB Data Structure loads the SCB parameters shown

into the SCB data structure at the address specified in A3113. After
requesting the bus, the host loads this data into the SCB data
structure via the parallel port controls write, data, and data strobe.
Note that the interrupt generated from a previous activity must be
acknowledged in the input ACK. The 82586 responds to this activity
with data acknowledgements.

A3115 Perform Diagnose Command is the execution of the Diagnose
* command by the 82586. It is begun by the host applying channel

attention to the NIB. The NIB responds with an interrupt when command
execution is completed (if the I bit is set in the Diagnose CBL).

Again, the execution of these activities must be in the order
A3111, A3112, A3113, A3114, A3115.

119

CL

ryI-.

14,

w4CiZ-43

044

4~~Z)(4 ' 1

cz:l
QO~

CACA

'.~ * 120

6T

A312 Transfer Results To Host

Abstract: This diagram decomposes the activity Transfer Results To(Host into its major functions.

Transfer Results To Host is composed of-activities which locate
the data of interest and move it to the host. The order of execution
of activities A3121 and A3122 is sequential as implied by their
positioning from upper left to lower right. The bus available outputrn is an indication as to whether or not the 82586 has taken control of
the NIB bus. During the activity Transfer Results To Host, the 82586
does not ever take control, so there is no contention problem.

A3121 Specify Start Address Of Data locates the starting address
of the data, and is performed by the host prior to reading the data
from the NIB memory. After requesting the bus, the host applies the
data starting address to the parallel port via the write and address
controls. The 82586 responds w.,ith data acknowledge.

A3122 Read Data To Host handles the actual function of
transferring the data. After requesting the bus, the host uses the
parallel port contr'ols read, data, and data strobe to step through NIB
memory and read the data. Data is transferred to the host, and the 14IB

* responds with data acknow,,ledgements.
Again, the execution of these activities must be in the order

A3121, A3122.

121

-- - . -. - -. 2

>L >

zk

LL-J

I-s W

LF-.

~ 0 LI

(N122

A32 Perform Internal Loopback

Abstract: This diagram decomposes the activity Perform Internal
Loopback into its major functions.

Perform Internal Loopback is composed of activities which set up
and execute the 82586 internal loopback test and transfer the results
to the host. The order of execution of activities A321 and A322 is
sequential as implied by their positioning from upper left to lower
right.

A321 Perform Internal Loopback Set Up And Execution prepares the
NIB to do the internal loopback test and then executes it. After
requesting the bus, the host uses parallel port controls to input
commands and data for preparing and executing this activity. The host
must also acknowledge the interrupt (shown as a control input) that was
generated by the NIB upon completion of a previous activity. The NIB
responds with parallel port controls while accepting commands and data.
The host starts command execution by applying channel attention, and
the NIB signals an interrupt when finished with command execution. The
bus available output from this activity is an indication as to whether
or not the 82586 has taken control of the NIB bus. During the activity
Perform Internal Loopback Set Up And Execution, the 82585 does take
control of the bus during the execution of the commands. However, the
host is not actively asking for the bus at these times, so there is no
contention. The interrupt output from this activity is typically the
result of the host setting the interrupt bit in the command to the
82586, although it could be the result of an error. For either reason,
the interrupt must be acknowledged by the host before the next activity
prompted by a channel attention can be completed.

A322 (Identical to activity A312)
Again, the execution of these activities must be in the order

A321, A322.

123

coo1

CC2e

kA

0 :i :

0 ne
C4 CC LwU4U

Q3C

- -24

A321 Perform Internal Loopback Set Up And Execution

Abstract: This diagram decomposes the activity Perform Internal
Loopback Set Up And Execution into its major functions.

Perform Internal Loopback Set Up And Execution requires the host
to create in NIB niemory a Command Block List (CBL) containing the
Configure command with internal loopback specified, and the Transmit
command. Since a data packet is transmitted and received (although
internal to the 82586), the transmission and reception data structures
must also be prepared by the host. Finally, the 82586 System Control
Block (SCB) is then prepared so that, when channel attention is
applied, the 82586 knows to execute the internal loopback test.
Execution of A3211, A3212, and A3213 can be in any order, but A3214
must occur last. The bus available output from each activity is an
indication as to :helher or not the 82586 has taken control of the NIB
bus. During the activity Prepare SCB And Execute Internal Loopback,
the 82586 does take control as it executes the command. However, the
host is not asking for the bus at this time, so there is no contention.
In the other three activities, the 82586 does not ever take control of
the bus.

A3211 Construct Internal Loopback CBL handles the creation of a
CBL containing the Configure command set for internal loopback. After
requesting the bus, the host uses parallel port controls to input
commands and data for executing this activity. The NIB responds with
data acknowledgements while accepting commands and data.

A3212 Prepare Transmission Data Structures handles the
Vinitialization of the 82586 transmission data structures in

anticipation of transmitting a data packet. The description of the
inputs and outputs is the same as for A3211.

A3213 Prepare Reception Data Structures handles the
initialization of the 82586 reception data structures in anticipation
of receiving a data packet. The description of the inputs and outputs
is the same as for A3211.

A3214 Prepare SCB And Execute Internal Loopback handles the
preparation of the SCB and the execution of the Configure command that
is set for internal loopback. After requesting the bus, the host uses
parallel port controls to input commands and data for executing this
activity. The host must also acknowledge the interrupt (shown as a
control input) that was generated by the NIB upon completion of a
previous activity. The NIB responds with parallel port controls while
accepting commands and data. The host starts command execution by
applying channel attention, and the NIB signals an interrupt when
finished with command execution. The interrupt output from this
activity is typically the result of the host setting the interrupt bit
in the command to the 82586, although it could be the result of an
error. For either reason, the interrupt must be acknowledged by the
host.

125

eq '

L-U4

144

cZQ~ LIr

cl C,

cd0

co

p 126

A3211 Construct Internal Loopback CBL

Abstract: This diagram decomposes the activity Construct Internal
Loopback CBL into its major functions.

Construct Internal Loopback CBL requires the host to create in NIB
i.,emory a Com,,and Block List (CBL) containing the Configure command set
for internal lo.pback, and a Transmit command for the packet to be
internally passed. Execution of activities A32111 and A32112 is
sequential as implied by their positioning from upper left to lower
righit. The bus available output from each activity is an indication as
to %wheth:er or not the 825, has taken control of the NIB bus. During
the activity Construct Internal Loopback CGL, the 82586 does riot ever
take control oF the bus, so there is no contention problem.

A32111 (Identical to activity A211)
A32112 Load internl Loopback Configure And Transmit Commands In

CBL loads tha Configure and Transmit parameters shoi,,n as inputs into
the CDL located by activity A32111. After requesting the bus, the host
loads the Ccnfigure and Transmit command parameters (according to their
respective data structures) into the CBL via the parallel port controls
write, data, and ddta strobe. The 82586 responds with
acknowI edge. t s.

Again, the order of execution is A32111, A32112.

127

---------------- - " - - . 1-

A3311 Construct External Loopback CBIL

Abstract: This diagram decomposes the activity Construct External
Loopback CBL into its major functions.

Construct External Loopback CLL requires the host to create in NIB
memory a Command Block List (CBL) containing the Configure command set
for external loopback, and a Transmit command for the packet to be
externally transmitted. Execution of activities A33111 and A33112 is
sequential as implied by their positioning from upper left to lower
right. The bus available output from each activity is an indication as
to whether or not the 825836 has taken control of the 'fID bus. During
the activity Construct External Loopback CDL, the 82586 does not ever
take control of the bus, so there is no contention proble'1.

A33111 (Identical to activity A211)
A33112 Load External Loopback Configure And TransTit Commands In

CBL loads the Configure and Transmit parameters shown as inputs into
the CBL located by activity A33111. After requesting the bus, the host
loads the Configure and Transmit command param.-eters (according to their
respective data structures) into the C-L via the parallel port controls
write, data, and data strobe. The 825f36 responds with
acknowledgements.

Again, the order of execution is A33111, A33112.

141

rq

RQ

C C

C.k

C.-.L

C'C

-'140

A331 Perform External Loopback Set Up And Execution

Abstract: This diagram decomposes the activity Perform External
Loopback Set Up And Execution into its major functions.

Perform External Loopback Set Up And Execution requires the host
to create in NIB memory a Command Block List (CDL) containing the
Configure command with enternal loopback specified, and a Transmit
command. Since a data packet is transmitted and received, the
transmission and reception data structures must also be prepared by the
host. Finally, the 82586 System Control Block (SCB) is then prepared
so that, whlen channel attention is applied, the 82586 knows to execute
the external loopback test. Execution of A3311, A3312, and A3313 can
be in any order, but A3314 must be last. The bus available output from
each activity is an indication as to whether or not the 82586 has taken
control of the NIB bus. During the activity A3314, the 82586 does take
control as it executes the commands. However, the host is not actively
asking for the bus at these times, so there is no contention. In the
other thre'2 activities, the 82586 does not ever take control of the
bus.

A3311 Construct External Loopback CBL handles the creation of a
CBL containing the Configure command (for external loopback) and the
Transmit comiind. After requesting the bus, the host uses parallel
port controls to input commands and data for executing this activity.
The NIB responds with data acknowledgements while accepting commands
and data.

A3312 (Identical to activity A3212)
A3313 (Identical to activity A3213)
A3314 Prepare SCB And Execute External Loopback handles the

preparation of the SCB and the execution of the Configure and Transmit
commands for external loopback. After requesting the bus, the host
uses parallel port controls to input commands and data for executing
this activity. The host must also acknowledge the interrupt (shown as
a control input) that %.,as generated by the NIB upon completion of a p
previous activity (such as A32143). The NIB responds with parallel
port controls while accepting commands and data. The host starts
command execution by applying channel attention, and the NIB signals an
interrupt when finished with command execution. During execution the
data transmitted is received from the network. The interrupt output
from this activity is typically the result of the host setting the
interrupt bit in the command to the 82586, although it could be the
result of an error. For either reason, the interrupt must be
acknowledged by the host before the next activity prompted by channel
attention can be completed.

Again, the execution of activities A3311, A3312, and A3313 can be
in any order, but A3314 must be last.

I

139I

(Nj (V> '-

CQt
qL

C4
EX~

'A

ka. rr

CA

04
<L Q- cc -

'A:

138

A33 Perform External Loopback

Abstract: This diagram decomposes the activity Perform External
Loopback into its major functions.

Perform External Loopback is composed of activities which set up
and execute the 82586 external loopback test and transfer the results
to the host. The crder of execution of activities A331 and A332 is
sequential as implied by their positioning from upper left to lower
right.

A331 Perform External Loopback Set Up And Execution prepares the
NIB for the external loophack test and then executes it. After
requesting the bus, the host uses parallel port controls to input
comui-nds and data for preparing and executing this activity. The host
must also ackno'ledge the interrupt (shown as a control input) that was
generated by the 111D upon completion of a previous activity. The NIB
responds with parallel port controls while accepting commands and data.
The host starts command execution by applying channel attention, and
the NIB signals an interrupt when finished with command execution.
During execution, a data packet is transmitted and received, so data
from the netw:ork is shown as an input. The bus available output from
this activity is an indication as to whether or not the 82586 has taken
control of the N13 bus. During the activity Perform External Loopback
Set Up And Execution, the 82586 does take control of the bus during the
execution of the commands. However, the host is not actively asking
forthe bus at these times, so there is no contention. The interrpt
output from this activity is typically the result of the host setting
the interrupt bit in the command to the 82586, although it could be the
result of an error. For either reason, the interrupt must be
acknowledged by the host before the next activity prompted by a channel
attention can be completed.

A332 (Identical to activity A312)
Again, the execution of these activities must be in the order

A331, A332.

I

137

-A

- - *-.. * -. -. * ,-~w~-~7*~ - -- ~ -

I

p

I

I

U

w
I-

L44 0k

C.:

6

(NJ
(NJ
m

6

6 S

136

I

A322 Transfer Results To Host

Abstract: This diagram, other than the content of the data transmitted,
is identical in function to activity A312. This activity transmits theresults of the internal loopback test, whereas activity A312 transmits

the results of the diagnose test.

135

. .I• . , .*'

4,. , . 2 _ .,:............ . . . - , ' / , ,: " " - " -

LIJ

'zz

C N

~~44

II

NN Q

~l
'41 U- C Q ~v-

cz,

14

A3214 Prepare SCB And Execute Internal Loopback

Abstract: This diagram decomposes the activity Prepare SCB And Execute
Internal Loopback into its major functions.

Prepare SCB And Execute Internal Loopback requires the host to
prepare the 82586 System Control Block (SCB) so that, when channel
attention is applied, the 82586 knows to execute the Configure command
set for the internal loopback test. Execution of A32141, A32142, and
A32143 is sequential and is implied by their positioning from upper
left to lower right. The bus available output from each activity is an
indication as to whether or not the 82586 has taken control of the NIB
bus. During the activities A32141 and A32142, the 82586 does not ever
take control of the bus, so there is no contention for the bus. During
activity A32143, the 82586 does take control during execution of the
command. However, the host is not actively asking for the bus during
this time, so there is again no contention.

A32141 (Identical to activity A213)
A32142 Load SCB Data Structure loads the SCB parameters shown

into the SCB data structure at the address speciTied in A32141. Note
that this activity differs from activity A214 in that the parameter RUC
must be included to turn the 82536 Receive Unit (RU) on. After
requesting the bus, the host loads this data into the SCB data
structure via the parallel port controls write, data, and data strobe.
Note that the interrupt from a previous activity (such as A3115) must
be acknowledged in the input ACK. The 82586 responds to this activity
with acknowledgements.

4 A32143 Execute Internal Loopback CBL is the execution of the
Configure (set for internal loopback) and Transmit commands in the CBL
by the 82586. It is begun by the host applying channel attention to
the NIB. The NIB responds with an interrupt when command execution is
completed (if the I bit is set in the Transmit command).

Again, the execution of these activities must be in the order
A32141, A32142, A32143.

133

.1)

-Q--

V..

%.0CN uk

.~ ZZ

31~

ui
"4

~~L-44

13

A3213 Prepare Reception Data Structures

Abstract: This diagram decomposes the activity Prepare Reception Data
Structures into its major functions.

Prepare Reception Data Structures handles the preparation of the
Receive Frame Descriptor (RFD) and the Receive Buffer Descriptor (RBD)
for an incoming data packet. Execution of A32131, A32132, A32133, and
A32134 is sequential as implied by their positioning from upper left to
lower right. The bus available output from each activity is an
indication as to whether or not the 82586 has taken control of the NIB
bus. During the activity Prepare Reception Data Structures, the 82586
does not ever take control, so there is no contention for the bus.

A32131 Specify Receive Frame Descriptor Address is performed by
the host prior to loading data into the RFD. After requesting the bus,
the host applies the RFD address to the parallel port via the write and
address controls. The 82586 responds with data acknowledge.

A32132 Load Receive Frame Descriptor Data Structure loads the
RFD parameters shown as inputs into the RFD located by activity A32131.
After requesting the bus, the host loads the RFD parameters (according
to the RFD data structure) into the [PFD via the parallel port controls
write, data, and data strobe. The 82586 responds with
acknowledgements.

A32133 Specify Receive Buffer Descriptor Address is performed by
the host prior to loading data into the RBD. After requesting the bus,
the host applies the RBD address to the parallel port via the write and
address controls. The 82586 responds with data acknowledge.

C " A32134 Load RBD Data Structure loads the RBD parameters shown as
inputs into the RBD located by activity A32133. After requesting the
bus, the host loads the RBD parameters (according to the RBD data
structure) into the RBD via the parallel port controls write, data, and
data strobe. The 82586 responds with acknowledgements.

Again, the execution of activities is in the order A32131, A32132,
A32133, and A32134.

131

..I

S)

KK Qe

Co.

Zw~

4OZZ,

C C

1304

A3212 Prepare Transmission Data Structures

Abstract: This diagram decomposes the activity Prepare Transmission
Data Structures into its major functions.

Prepare Transmission Data Structures handles the preparation of
the Transmit Buffer Descriptor (TBD) and the Data Buffer containing the
data to be transmitted. Execution of A32121, A32122, A32123, and
A32124 is sequential as implied by their positioning from upper left to
lower right. The bus available output from each activity is an
indication as to whether or not the 82586 has taken control of the NIB
bus. During the activity Prepare Transmission Data Structures, the
82586 does not ever take control, so there is no contention for the
bus.

A32121 Specify Transmit Buffer Descriptor Address is performed
by the host prior to loading data into the TBD. After requesting the
bus, the host applies the TBD address to the parallel port via the
write and address controls. The 82586 responds with data acknowledge.

A32122 Load Transmit Buffer Descriptor Data Structure loads the
TBD parameters shown as inputs into the TBD located by activity A32121.
After requesting the bus, the host loads the TBD parameters (according

0 to the TBD data structure) into the TBD via the parallel port controls
write, data, and data strobe. The 82586 responds with
acknowledgements.

A32123 Specify Data Buffer Address is performed by the host
prior to loading the data to be transmitted into the buffer. After

Cz requesting the bus, the host applies the data buffer address to theci ~'parallel port via the write and address controls. The 82586 responds
with data acknowledge.

A32124 Load Data Buffer loads the data buffer with the data to
be transmitted. After requesting the bus, the host loads the buffer
via the parallel port controls write, data, and data strobe. The 82586
responds with acknowledgements.j

01 Again, the execution of activities is in the order A32121, A32122,
A32123, and A32124.

129

(NJ

F. K

0-

cw U

1284

"II

(,

L..0

co (~X
-'-

'7 C4-.

'-7 0 CL

CIO

-44

1424

A3312 Prepare Transmission Data Structures

Abstract: This activity performs the same function as activity A3212.

143

LAJ

144zz

A3313 Prepare Reception Data Structures

Abstract: This activity performs the same function as activity A3213.

145

I'

4 ,p

CY

1461

A3314 Prepare SCB And Execute External Loopback

Abstract: This diagram decomposes the activity Prepare SCB And Execute
External Loopback into its major functions.

Prepare SCB And Execute External Loopback requires the host to
prepare the 82536 System Control Block (SCB) so that, when channel
attention is applied, the 82586 knows to execute the Configure command
(set to external loopback) and the Transmit command. Execution of
A33141, A33142, and A33143 is sequential and is implied by their
positioning from upper left to lower right. The bus available output
from each activity is an indication as to whether or not the 82586 has
taken control of the 1IB bus. During the activities A33141 and A33142,
the 82586 does not ever take control of the bus, so there is no
contention for the bus. During activity A33143, the 82586 does take
control during execution of the command. However, the host is not
actively asking for the bus during this time, so there is again no
contention.

A33141 (Identical to activity A213)
A33142 (Identical to activity A32142)
A33143 Execute External Loopback CBL is the execution of the

Configure (set for external loopback) and Transmit commands in the CBL
by the 82586. It is begun by the host applying channel attention to
the NIB. During execution, a data packet is transmitted and received.
The NIB responds with an interrupt when command execution is completed
(if the I bit is set in the Transmit command).

Again, the execution of these activities must be in the order
4 '~ A33141, A33142, A33143.

147

k,

Lt-

2

IANJ

*C
t j N' kA L

I~I-

C.1 \11

1484

A332 Transfer Results To Host

Abstract: This activity performs the same function as activity A312.

149

(!

I-

.. .I., ---. . .. - -

CNI

LU K

*rf)

150

A34 Perform TDR Test

Abstract: This diagram decomposes the activity Perform TDR Test into
its major functions.

Perform TOR Test Is composed of activities which set up and
execute tile 82586 TDR command and transfer the results to the host.
The order of execution of activities A341 and A342 is sequential as
implied by their positioning from upper left to lower right.

A341 Execute 82586 TDR performs the Time Domain Ref lectometer
test. After requesting the bus, the host uses parallel port controls
to input commands and data for executing this activity. The host must
also acknowledge the interrupt (shown as a control input) that was
generated by the N~IB upon completion of a previous activity (such as
A33143). The NIB responds with parallel port controls while accepting
commands and data. The host starts command execution by applying
channel attention, and the HIB signals an interrupt when finished with
command execution. The bus available output from this activity is an
indication as to whther or not the 8258G has taken control of the NIB
bus. During the activity Execute 82586 TDR, the 82586 does take
control of the bus during the execution of the command. However, the
host is not actively asking for the bus at this time, so there is no
contention. The interrupt output from this activity is typically the
result of the host setting the interrupt bit in the command to the
82586, although it could be the result of an error. For either reason,
the interrupt must be acknowledged by the host before the next activity
prompted by a channel attention can be completed.

A342 (Identical to activity A312)
Again, the execution of these activities must be in the order

A341, A342.

151

kk

'-1

CK CK

Q3O

152K

A341 Execute 82586 TDR

Abstract: This diagram decomposes the activity Execute 82586 TDR into
its major functions.

Execute 82586 TDR requires the host to create in NIB memory a
Command Block List (CBL) containing the TDR command. The 82586 System
Control Block (SCB) is then prepared so that, when channel attention is
applied, the 82586 knows to execute the TDR command. Execution of
A3411, A3412, A3413, A3414, and A3415 is sequential as implied by their
positioning from upper left to lower right. The bus available output
from each activity is an indication as to whether or not the 82586 has
taken control of the hID bus. During the activity Execute 82586 TDR,
the 82585 does take control as it executes the command. However, the
host is not actively asking for the bus at this time, so there is no
contention.

A3411 (Identical to activity A211)
A3412 Load TDR Command In CBL loads the TDR parameters shown as

inputs into the CDL located by activity A3411. After requesting the
bus, the host loads the TDR command parameters (according to the TDR
command data structure) into the CBL via the parallel port controls
write, data, and data strobe. The 82586 responds with data
acknowledgements.

A3413 (Identical to activity A213)
A3414 Load SCB Data Structure loads the SCB parameters shoen

into the SCD data structure at the address specified in A3413. After
requesting the bus, the host loads this data into the SCB data
structure via the parallel port controls write, data, and data strobe.
Note that the interrupt generated from a previous activity must be
acknowledged in the input ACK. The 82586 responds to this activity
with data acknowledgements.

A3415 Perform TDR Command is the execution of the TDR command by
the 82586. It is begun by the host applying channel attention to the
NIB, and the network response is collected by the NIB. The NIB
responds with an interrupt when command execution is completed (if the
I bit is set in the TDR CBL).

Again, the execution of these activities must be in the order
A3411, A3412, A3413, A3414, A3415.

153

UC-.

0i0

Q C-1~

m x

lkq
I rn Lk.

1544

A342 Transfer Results To Host

Abstract: This activity performs the same function as activity A312.

155

A42 Transmit Network Data

Abstract: This diagram decomposes the activity Transmit Network Data
into its major functions.

Transmit Network Data performs the task of data transmission over
the network. This is accomplished by constructing a Command Block List
(CBL) containing one or more Transmit commands, preparing the
transmission data structures, executing the command(s), and then
verifying their correct transmission. Execution of activities A421,
A422, A423, and A424 is sequential as implied by their positioning from
upper left to lower right. The host must monitor bus available while
transferring commands and data to and from the NIB. Should the 82586
take over the N:IB bus, the host can either save its state and continue
the interrupted activity later, or start the interrupted activity over.
Therefore, bus available is shown as a control input and an output from
every activity.

A421 Construct Transmit CBL prepares a CBL of one or more
Transmit commands. After requesting the available bus, the host uses
parallel port controls to input commands and data from the host. The
1i11 responds with data acknowledges while accepting the commands and
data.

A422 Prepare Transmission Data Structures performs the same
function as activity A3212. The only difference is that the activity
may have to be repeated or continued later if the 82586 takes over the
NIB bus during its execution.

A423 Prepare SCB And Execute Transmit handles the set up of the
SCB and the execution of the Transmit command CBL. After requesting
the available bus, the host uses parallel port controls to input
commands and data for executing this activity. The NIB responds with
data acknowledgements. The interrupt from a previous activity must be
acknowledged by the host prior to executing the CBL. The host starts
the transmission process by applying channel attention to the NIB, and
the result is the transmission of data to the network. The NIB signals
an interrupt upon completion of command execution.

A424 Transfer Transmit Command Status To Host transfers the
status of the data transmission to the host. After requesting the
available bus, the host uses parallel port controls to input commands
and data for executing this activity. The NIB responds with data
acknowledgements. The result of this activity is the transfer of the
Transmit command status word to the host.

Again, the order of execution is A421, A422, A423, A424.

169

(NJ Vq

0Q4

Co~
K~>

-

'- ,

cu '

Ccc~ c

cc
r"I

:168

A415 Transfer Received Data To Host

Abstract: This diagram decomposes the activity Transfer Received Data
To Hlost into its major functions.

Transfer Received Data To Host handles the transfer of the data
received from the network to the host. Execution of activities A4151
and A4152 is sequential as implied by their positioning from upper left
to low-,er right. The host must monitor bus available while transferring
commands and data to and from the NIB. Should the 82586 take over the
bus, the host can either save its state and continue the interrupted
activity later, or start the interrupted activity over. Therefore, bus
available is shown as a control input and an output from activities
A4151 and A4152.

A4151 Specify Start Address Of Received Data is performed by the
host prior to transferring the received data to the host. After
requesting the available bus, the host applies the start address of the
received data to the parallel port via the write and address controls.
The NIB responds with data acknowledge.

A4152 Read Received Data To Host handles the function of
transferring the received data. After requesting the bus, the host
uses parallel part controls read, data, and data strobe to step through
NIB memiory and read the status data. Data is transferred to the host,
and the IM responds with data acknoviledgements.

Again, execution is in the order A41151, A4152.

167

- - -. . - . .- n. -. .* ~
-

K >' >

0

CNJ r~q

*~C4

- '4-

'A

c~z~-.

-J

c~ uj

'4~ -4

'-~ >
~

t-~ ~A K
0

RU ~-
K

U h-

t z

LA.

-~

VA
VA
'-A-

0

LA,

-4

o
*~

'~~1

A-A

W ~
VA

-'4-

L

'-4

-~ 'J, AA~

~

,-~ -i

~ I

166

* A414 Transfer SCB Status To Host

Abstract: This diagram decomposes the activity Transfer SCB Status To
Host into its major functions.

Transfer SCB Status To Host handles the movement of the System
Control Block (SCB) status word from NIB memory to host memory.
Execution of A4141 and A4142 is sequential as implied by their
positioning from upper left to lover right. The host must monitor bus
available while transferring commands and data to and from the NIB.
Should the 82586 take over the bus, the host can either save its state
and continue the interrupted activity later, or start the interrupted
activity over. Therefore, bus available is shown as a control input
and an output from activities A4141 and A4142.

A414 Specify Address Of SCB Status Data is performed by the
host prior to transferring the SCB status word to the host. After
requesting the available bus, the host applies the start address of the
SCB status word to the parallel port via the write and address
controls. The NIB responds with data acknowledge.

A4142 Read SCB Status Data To Host handles the function of
transferring the status data. After requesting the bus, the host uses
the parallel port controls read, data, and data strobe to step through
NIB memory and read the status data. Data is transferred to the host,
and the NIB responds with data acknowledgements.

Again, execution is in the order A4141, A4142.

165

-I-

LI-
CQle ~

to w

164

A412 Prepare SCB SatRU

Abstract: This diagram decomposes the activity Prepare SCB Start RU
into its major functions.

Prepare SCB Start RU enables the NIB to receive and store in NIB
memory an incoming data packet. The command to start the Receive Unit
(RU) of the 82585 is placed in the System Control Block (SCO), and
channel attention is applied by the host to start the RU. Execution of
activities A4121, A4122, and A4123 is sequential as implied by their
positioning from upper left to lower right. The host must monitor bus
available while transferring commands and data to and from the NIB.
Should the 82585 take over the bus, the host can either save its state
and continue the interrupted activity later, or start the interrupted
activity over. Therefore, bus available is shown as a control input
and an output from activities A4121 and A4122.

A4121 Specify SCB Address performs the same function as activity
A213. The only difference is that the activity may have to be repeated
or continued later if the 82586 takes over the NIB bus during its
execution.

A4122 Load SCB Data Structure performs the same function as
activity A214. The only difference is that the activity may have to be

* repeated or continued later if the 82586 takes over the NIB bus during
its execution.

A4123 Start RU handles the starting of the 82586 RU. The RU is
started by the host applying channel attention to the NIB, using the
SCB prepared in activity A4122. The NIB does not control the bus
during this activity.

Again, the order of execution is A4121, A4122, A4123.

163

-4

Ic
LL.d CS

:! C)

CA-.

o- LA- I

-'CX

'4 -3 !!
0 *q~ ell

*C: 'C0-

; I

162:

A411 Prepare Reception Data Structures

Abstract: This diagram decomposes the activity Prepare Reception Data
Structures into its major functions.

Prepare Reception Data Structures Prepare Reception Data
Structures handles the preparation of the Receive Frame Descriptor
(RFD) and the Receive Buffer Descriptor (RBD) for an incoming data
packet. Execution of A4111, A4112, A4113, and A4114 is sequential as
implied by their positioning from upper left to lower right. The host
must monitor bus available while transferring commands and data to and
from the NIB. Should the 82586 take over the NIB bus, the host can
either save its state and continue the interrupted activity later, or
start the interrupted activity over. Therefore, bus available is shown
as a control input and an output from every activity.

A4111 Specify Receive Frame Descriptor Address performs the same
4function as activity A32131. The only difference is that the activity

may have to be repeated or continued later if the 82586 takes over the
NIB bus during its execution.

A4112 Load Receive Frame Descriptor Data Structure performs the
same function as activity A32132. The only difference is that the
activity may have to be repeated or continued later if the 82586 takes
over the NIB bus during its execution.

A4113 Specify Receive Buffer Descriptor Address performs the
same function as activity A32133. The only differcnce is that the
activity may have to be repeated or continued later if the 82536 takes
over the NIB bus during its execution.

| T A4114 Load RBD Data Structure performs the same function as
activity A32134. The only difference is that the activity may have to
be repeated or continued later if the 82586 takes over the NIB bus
during its execution.

Again, execution is in the order A4111, A4112, A4113, A4114.

161

KL

KQ

AL

(v

t _ 14 ~

160

A41 Receive Network Data

Abstract: This diagram decomposes the activity Receive Network Data
into its major functions.

Receive Network Data is accomplished in three steps. First, the
host must prepare thle reception data structures and start the 82586
Receive Unit (RU). Second, data must be received. Third, the System
Control Block (SCB) status word must be examined by the host to ensure
correct reception. Activities A411, A412, A413, A414, and A415
accomplish these three functions, and their execution is sequential as
implied by their positioning from upper left to lower right. Note,
however, that A413 may preempt the execution of another activity since
data reception has highest priority. The host must monitor bus
available %w.hile transferring commands and data to and from the NIB.
Should the 82586 take over the bus, the host can either save its state
and continue thle interrupted activity later, or start the interrupted
activity over. Therefore, bus available is shown as a control input
and an output from activities A411, A412, A414, and A415.

A411 Prepare Reception Data Structures performs the same
function as activity A3213. The only difference is that the activity

* may have to be repeated or continued later if the 82586 takes over the
NIB bus during its execution.

A412 Prepare SCB Start RU enables the N1IB to receive data from
the network. After requesting thle available bus, the host uses
parallel port controls to input commands and data for executing this
activity. The NIB responds with data acknowledgements while accepting

V commands and data. Note that the interrupt from a previous activity
C must be acknowledged before the RU is enabled. The RU is enabled by

the host applying channel attention.
A413 (Receive Data) is an activity performed by the 82586 RU,

and does not involve the host. It is included here only for
completeness. When the 82586 detects an incoming data packet, it takes

* over the bus, receives the packet, and outputs an interrupt to notify
the host of the reception.

A414 Transfer SGB Status To Host transfers the status of the
reception to the host for verification of correctness. After
requesting the available bus, the host uses parallel port controls to
input commands and data for executing this activity. The N4IB responds

* with data acknowledgements. The result is the transfer of the status
data to the host.

A415 Transfer Received Data To Host moves the received data from
NIB memory to host memory. After requesting the available bus, the
host uses parallel port controls to input commands and data for
executing this activity. The NIB responds with data acknowledgements,

* and the received data is transferred to the host.
Again, the order of execution is A411, A412, A413, A414, A415.

Note, however, that A413 has priority.

159

-, - -- -~ *. ~ CY-

ro

czN

4

C,

C-4

ClC)

- ~ ~158

A4 Receive/Transmit Data

Abstract: This diagram decomposes the activity of Network Data
(IW~ Exchange into its major functions.

Network Data Exchange is composed of activities which perform the
transmission and reception of data over the network. Tile two
activities Receive Network Data and Transmit Network Data are the
real-time activities occurring during a simulation. One or the other
may be active, but not simultaneously. Furthermore, activity Receive
Network Data is of higher priority, such that if Transmit Network Data
is active when data needs to be received, Transmit Network Data will be
interrupted and completed at a later time. The means by which this is
accomplished is through the bus available line. The host must monitor
bus available while transferring commands and data to and from the NIB.
Should the 82586 take over the bus, the host can either save its state
and continue the interrupted activity later, or start the interrupted
activity over. Therefore, bus available is shown as a control input
and an output from both activities. The interrupt Output from each
activity is typically the result of the host setting the interrupt bit
in a command to the 82586, or, in the case of activity A41, it could be
the result of a data reception. However, the interrupt could also be
from an error. In any case, the interrupt must be acknowledged, and is
shown as a control input.

A41 Receive Network Data performs the task of data reception.
After requesting the bus, the host uses parallel port controls to input
commands and data from the host. The NIB responds with parallel port
controls while accepting commands and data. The host starts command
execution by applying channel attention, and the NIB signals an
interrupt when finished with the command, and after data reception.
The data is then transferred to the host.

A42 Transmit Network Data performs the task of data
transmission. After requesting the bus, the host uses parallel port
controls to input commands and data from the host. The NIB responds
with parallel port controls while accepting commands and data. The
host starts command execution by applying channel attention, and data
is transferred to the network. The NIB signals an interrupt when
finished with execution. Finally, the Transmit command status word is
transferred to the host to verify correct transmission.

* Again, operation of the simulation switches between these two
activities, with data reception having priority.

157

I.'I

40

(NJJ

LuZ

1561

.4

~
~Th

4
0

0

0

z
k

0
C.'

0

m J-q kN
00 XZ

v~

~"J
)' >-

0~-

~4J

,~ 'C-

C-. N ~.'

C-C-

0I-~ N~

C-.~ w 0

- 0
4 -J 0

C-- -~

K

~t~J

K (NI

C.' ~
K ':2::,

C
~

~ _

K

r ~ -~ .- ~

170

A421 Construct Transmit CBL

Abstract: This diagram decomposes the activity Construct Transmit CBL
(into its major functions.

Construct Transmit CBL handles the preparation of the Command
Block List (CBL) containing one or more Transmit commands. Execution
of activities A4211 and A4212 is sequential as implied by their
positioning from upper left to lower right. The host must monitor bus
available while transferring commands and data to and from the NIB.
Should the 82586 take over the NIB bus, the host can either save its
state and continue the interrupted activity later, or start the
interrupted activity over. Therefore, bus available is shown as a
control input and an output from both activities.

A4211 Specify C8L Address performs the same function as activity
A211. The only difference is that the activity may have to be repeated
or continued later if the 8258G takes over the NIB bus during its
execution.

A4212 Load Transmit Commands In CBL handles the loading of one
or more Transmit commands in a CDL which, when executed, will transmit
data over the netuork. After requesting the available bus, the host
loads the Transmit command parameters shown (according to the Transmit
command data structure) into the CBL via the parallel port controls
write, data, and data strobe. The 82586 responds with
acknowledqements.

Again, the order of execution is A4211, A4212.

1

I

I

I

fl 171

4 - -. ' - -. -

6

(

~' ~-

.: ~NJ

00
Kf N

N
~

~

z o
0

* -J -4

'-U

Q
L~.j

~ -t
~

-4-

'-4

N
'A ~ -~
A

* ~--I-

k

k ko
0

* '~ '-4

0

______ -4
(NJ

3

L.'I ~.-~--
~ 'A
~ 0
-'. .- J

-t ~e

-I -~

~~KjKj ~

I

172

I

-- , ~. A&. A..p ~ - - a k... .t Z Z k.

A422 Prepare Transmission Data Structures

Abstract: This diagram decomposes the activity Prepare Transmission
Data Structures into its major functions.

Prepare Transmission Data Structures handles the preparation of
the Transmit Buffer Descriptor (TBD) and the Data Buffer containing the
data to be transmitted. Execution of A4221, A4222, A4223, and A4224 is
sequential as implied by their positioning from upper left to lower
right. The host must monitor bus available while transferring commands
and data to and from the NIB. Should the 82586 take over the NIB bus,
the host can either save its state and continue the interrupted
activity later, or start the interrupted activity over. Therefore, bus
available is shown as a control input and an output from every
activity.

A4221 Specify Transmit Buffer Descriptor Address performs the
same function as activity A32121. The only difference is th,,t the
activity may have to be repeated or continued later if the 82586 takes
over the NIB bus during its execution.

A4222 Load Transmit Buffer Descriptor Data Structure performs
the same function as activity A32122. The only difference is that the

* activity may have to be repeated or continued later if the 82586 takes
over the IID bus during its execution.

A4223 Specify Data Buffer Address performs the same function as
activity A32123. The only difference is that the activity may have to
be repeated or continued later if the 82586 takes over the NIB bus
during its execution.

WN wA4224 Load Data Buffer performs the same function as activity
A32124. The only difference is that the activity may have to be
repeated or continued later if the 82586 takes over the 14IB bus during
its execution.

Again, the order of execution is A4221, A4222, A4223, A4224.

173

*

N)N

L41.

Lj-AUL
Qo

Q4C

N (A

-J -

_j0

1749 '

A423 Prepare SCB And Execute Transmit

Abstract: This diagram decomposes the activity Prepare SCB And Execute
Transmit into its major functions.

Prepare SCB And Execute Transmit handles the preparation of the
System Control Block (SCB) in anticipation of executing the Transmit
command CBL of activity A421. Execution of activities A4231, A4232,
and A4233 is seouential as implied by their positioning from upper left
to lower right. The host must monitor bus available while transferring
commands and data to and from the NIB. Should the 82586 take over the
NIB bus, the host can either save its state and continue the
interrupted activity later, or start the interrupted activity over.
Therefore, bus available is shown as a control input and an output from
every activity.

A4231 Specify SCB Address performs the same function as activity
A213. The only difference is that the activity may have to be repeated
or continued later if the 82586 takes over the HIB bus during its
execution.

A4232 Load SCB Data Structure performs the same function as
activity A214. The only difference is that the activity may have to be
repeated or continued later if the 82586 takes over the NIB bus during
its execution.

A4233 Perform Transmit Command is the execution of the Transmit
command CBL by the 82586. It is begun by the host applying channel
attention to the NIB. The NIB responds with an interrupt when command
execution is completed (if the I bit is set in the Transmit command).
The end result is the transmission of the data over the network.

Again, the order of execution is A4231, A4232, A4233.

175

C3

'4:1

00

LU)

Z: CL c

~LQ

CM

17

A424 Transfer Transmit Command Status To Host

Abstract: This diagram decomposes the activity Transfer Transmit
Command Status To Host into its major functions.

Transfer Transmit Command Status To Host handles the movement of
the Transmit command status word from NIB memory to host memory.
Execution of A4241 and A4242 is sequential as implied by their
positioning from upper left to lower right. The host must monitor bus
available while transferring commands and data to and from the NIB.
Should the 82586 take over the bus, the host can either save its state
and continue the interrupted activity later, or start the interrupted
activity over. Therefore, bus available is shown as a control input
and an output from activities A4241 and A4242.

A4241 Specify Start Address Of Transmit Command Status Data is
performed by the host prior to transferring the Transmit Command status
word to the host. After requesting the available bus, the host applies
the start address of the Transmit command status word to the parallel
port via the write and address controls. The NIB responds with data
acknowledge.

A4242 Read Transmit Command Status Data To Host handles the
function of transferring the status data. After requesting the bus,
the host uses the parallel port controls read, data, and data strobe to
step through NIB memory and read the status data. Data is transferred
to the host, and the NIB responds with data acknowledgements.

Again, execution is in the order A4241, A4242.

177

-4 - *

t4 C

00 0

74N C, o
lj

178kV

A5 Diagnose NIB Errors

Abstract: This diagram decomposes the activity Error Diagnostics into
r its major functions.

Error Diagnostics is composed of activities which transfer
critical data from the NIB to the host to determine the cause of
errors. Although the order of execution is implied by their positions
in the diagram, activities A51, A52, and A53 can be executed in any

j order. However, the order shown is recommended as the inforimation
obtained goes from specific to general across activity A5. The bus
available output from each activity is an indication as to whether or
not the 82586 has taken control of the NIB bus. During the activity
Diagnose HIB Errors, the 82586 does take control of the bus during
command execution (A53), but the host is not actively asking for the
bus at this time, so there is no contention problem.

A51 Transfer SCE3 Status To Host transfers the System Control
Block (SGB) status word to the host for analysis. After requesting the
bus, the host uses parallel port controls to input commands and data
for executing this activity. The NIB responds with data
acknowledgements. The result is the transfer of the status data to the

* host.
A52 Transfer Command Status To Host transfers the status word of

the command experiencing the error to the host for analysis. After
requesting the bus, the host uses parallel port controls to input

* commands and data for executing this activity. The NIB responds with
data acknowledgements. The result is the transfer of the status to the
host.

A53 Perform Dump Status executes the 82586 Dump Status command.
After requesting the bus, the host uses parallel port controls to input
commands and data for executing this activity. The host must also
acknowledge the interrupt (shown as a control input) that was generated
by the NIB upon completion of a previous activity. The NIB responds

S with parallel port controls while accepting commands and data. The
host starts command execution by applying channel attention, and the
NIB signals an interrupt when finished with command execution. The
interrupt output is typically the result of the host setting the
interrupt bit in the command to the 82586, although it could be the
result of an error. For either reason, the interrupt must be

-0 acknowledged by the host before the next activity prompted by a channel
attention can be completed.

Again, the recommended order of execution is A51, A52, A53.

179

IV
Ld -4

'-11

~~(3

CO.

'-K

18

A51 Transfer SCB Status To Host

Abstract: This diagram decomposes the activity Transfer SCB Status To
Host into its major functions.

Transfer SCB Status To Host handles the movement of the System
Control Block (SCB) status word from NIB memory to host memory.
Execution of A511 and A512 is sequential as implied by their
positioning from upper left to lower right. The bus available output
from both activities is an indication as to whether or not the 8258G
has taken contrcl of the NIB bus. During activity Transfer SCB Status
To Host, the 82586 does not ever take control, so there is no
contention problem.

A511 Specify Start Address Of SCB Status Data is performed by
the host prior to transferring the SCB status word to the host. After
requesting the available bus, the host applies the start address of the
SCB status word to the parallel port via the write and address
controls. The NIB responds with data acknowledge.

A512 Read SCB Status Data To Host handles the function of
transferring the status data. After requesting the bus, the host uses
the parallel port controls read, data, and data strobe to step through
NIB memory and read the status data. Data is transferred to the host,
and the NIB responds with data acknowledgements.

Again, execution is in the order A511, A512.

181

Q4J

CY

cZ'I

Lu u

C,-

--- 4 cK

C182

A52 Transfer Command Status To lost

Abstract: This diagram decomposes the activity Transfer Command Status
To Host into its major functions.

Transfer Command Status To Host handles the movement of the
command status word of the command in error from NIB memory to host
memory. Execution of A521 and A522 is sequential as implied by their
positioning from upper left to lower right. The bus available output
from both of these activities is an indication as to whether or not the
82586 has taken control of the NIB bus. During the activity Transfer
Command Status To Host, the 82586 does not ever take control, so there
is no contention problem.

A521 Specify Start Address Of Command Status Data is performed
by the host prior to transferring the command status word to the host.
After requesting the bus, the host applies the start address of the
command status word to the parallel port via the write and address
controls. The NIB responds with data acknowledge.

A522 Read Command Status Data To Host handles the function of
transferring the status data. After requesting the bus, the host uses
the parallel port controls read, data, and data strobe to step through
NIB memory and read the status data. Data is transferred to the host,
and the IIB responds with data acknowledgements.

Again, execution is in the order A521, A522.

183

p

RD-R152 242 DESIGN AND SPECIFICATION OF A LOCAL AREA NETWORK 3/3
ARCHITECTURE FOR USE IN..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. L R MAKI

UNCLASIFIED SEP 84 AFIT/GCS/ENG/84S-3 F/G 9/5 N

MEu'...

11111 - .2

MICROCOPY RJIS_U~iONIi,,1, CHARI

0 C

H..A
r

)C4>

00

\A -e

& I -

0 184

'6 V

A53 Perform Dump Status

Abstract: This diagram decomposes the activity Perform Dump Status
into its major functions.

Perform Dump Status is composed of activities which set up and
execute the 82586 Dump Status command and transfer the results to the
host. The order of execution of activities A531 and A532 is sequential
as implied by their positioning from upper left to lower right.

A531 Execute 82586 Dump Status performs a dump into NIB memory
of the contents of various 82586 registers. After requesting the bus,
the host uses parallel port controls to input commands and data for

* executing this activity. The host must also acknowledge the interrupt
* (shown as a control input) that was generated by the NIB upon

completion of a previous activity. The 1118 responds with parallel port
controls while accepting commands and data. The host starts command
execution by applying channel attention, and the NIB signals an

*interrupt when finished with execution. The bus available output from
this activity is an indication as to whether or not thc 82586 ha s taken
control of the NIB bus. During the activity Execute 82586 Dump Status,

* the 82586 does take control of the bus during command execution.
I However, the host is not actively asking for the bus at this time, so
* there is no contention problem. The interrupt output from this

activity is typically the result of the host setting the interrupt bit
* in the command to he 82586, although it could be the result of an

error. For either reason, the interrupt must be acknowledged by te
___ host before he next activity prompted by a channel attention can be

completed.
A532 (Identical to activity A312)
Again, the order of execution is A531, A532.

185

..
d-

- -. - - - -

>')

04

'N m~2-

o o

~186

A531 Execute 82586 Dump Status

Abstract: This diagram decomposes the activity Execute 82586 Dump
Status into its major functions.

Execute 82586 Dump Status requires the host to create in NIB
memory a Command Block List (CBL) containing the Dump Status command.
The 82586 System Control Block (SCB) is then prepared so that, when
channel attention is applied, the 82586 knows to execute the Dump
Status command. Execution of A5311, A5312, A5313, A5314, and A5315 is
sequential as implied by their positioning from upper left to lower
right. The bus available output from each activity is an indication as
to whether or not the 82586 has taken control of the NIB bus. During
the activity Execute 82586 Dump Status, the 82586 does take control as
it executes the command. However, the host is not actively asking for
the bus at this time, so there is no contention problem.

A5311 (Identical to activity A211)
A5312 Load Dump Status Command In CBL loads the Dump Status

command parameters shown as inputs into the CBL located by activity
A5311. After requesting the bus, the host loads the Dump Status
conmand parameters (according to the Dump Status command data
structure) into the CBL via the parallel controls write, data, and data
strobe. The 82586 responds with data acknowledgements.

A5313 (Identical to activity A213)
A5314 (Identical to activity A214)
A5315 Perform Dump Status Command is the execution of the Dump

Status command by the 82586. It is begun by the host applying channel
attention to the NIB. The NIB responds with an interrupt when command
execution is completed (if the I bit is set in the Dump Status CBL).

Again, the order of execution is A5311, A5312, A5313, A5314,
A5315.

1 87

-~~~~~~~ -. --.----- - - -.--

II

%A cy-)

CLl

0i0
4z O

I2
co

~>

,~ >- b

UJ :A

- CZ)

0C

0 ~4J (188

* - A532 Transfer Results To Host

Abstract: This activity performs the same function as activity A312.

189

CA

LLin

190

TABLE D.2

Glossary/Data Dictionary

ACK -Acknowledgement bits set by the host in the System Control
Block.

ACT-COUNT - Indicates the number of bytes that hold information for
the current buffer.

Address - The parallel port control specifying that an address is on
the 16 bidirectional lines.

ALNERRS - The number of misaligned frames discarded because of CRC
errors, initialized to zero by the host, updated by the 82586.

B - Indicates when set chat the 82586 is currently executing the
command.

BD-PTR - The pointer to the Buffer Descriptor.

Buffer Address - The starting address of the memory area that contains
the data to be sent.

Bus Available - Signal to the host indicating the availability of the
NIB bus.

Bus Request - Signal to the NIB indicating the host wants control of
the NIB bus.

Busy - Indicates that the 82586 is being initialized.

Byte Count - The number of bytes in the configure command to be
changed.

C - Indicates the execution status of a command; set following
execution.

CBL Address -The address of the Command Block List.

CBL Offset -The offset portion of the Command Block list address.

Channel Attention - Signal applied to the NIB by the host to execute
commands in a Command Block list.

CMD - The command opcode.

Commands And Data From Host - Information supplied to the NIB from the
host necessary for activity execution.

191

.°7

TABLE D.2

Glossary/Data Dictionary (Continued)

Configuration - The process of tailoring the 82586 for the
application.

Configuration Parameters - The parameters in the Configure command
allowing the 82586 to be tailored to the application.

Configure For Internal Loopback - The Configure command set for
internal loopback.

Configure For External Loopback - The Configure command set for
external loopback.

CRCERRS - The number of aligned frames discarded because of CRC
errors, initialized to zero by the host, updated by the 82586.

CUC - The opcode command to the Command Unit in the System Control
Block.

Data - The parallel port control specifying that data is on the 16
bidirectional lines.

Data Acknowledge - A parallel port control having a dual purpose. In
the read mode, it asserts a pulse while the NIB holds the data
valid. In the write mode, it's pulse acknowledges receipt of the
data or address.

Data From Network - Information received from the network side of the
NIB.

Data Strobe - The data synchronization strobe having a dual purpose.
In the read mode, it signals the NIB to output the data at the next
sequential address. In the write mode, it signals the NIB to
strobe in the data on the bus into the present memory address
location and then increment the address to the next sequential

location.

I
Data To Be Transmitted - Data to be transmitted over the network.

Data To Host - Information sent to the host from the NIB.

Data To Network - Information sent to the network from the NIB.

Destination Address - The address to which data is to be sent.

EL - Indicates when set that the command is the last on the CBL.

192

TABLE D. 2

Glossary/Data Dictionary (Continued)

EOF -Indicates when Bet that the TBD is the last associated with the
frame being transmitted.

Error Diagnostics - The process of determining the cause of an error
which occurred during System Diagnostics or network Data Exchange.

F - Indicates when set that the RBD has already been used.

I - Indicates when set that the 82586 will generate an interrupt after
execution of the command is completed.

Individual Address - The unique address by which the NIB will be
recognized.

Initialization - The process of initializing the 82586 and getting it
to a standard state.

Interrupt - Signal to the host indicating one or more of the following:
the command just executed has the interrupt bit set; a data
packet has been received; the 82586 Receive Unit is not
ready; the 82586 Command Unit is not ready.

ISCP Address - The address of the 82586 Intermediate System Control
Pointer.

Link Address - A pointer to the next command on the CBL.

Multicast Addresses - The multicast addresses by which the NIB will be
recognized.

Network Data Exchange - The real-time process of receiving and
transmitting data over the network.

Next BD Address - The offset portion of the address of the next TBD on
the TBD list.

OVRNERRS - The number of frames that are known to be lost due to a
lack of local system bus availability, set to zero by the host,
updated by the 82586.

Parallel Port Control From Host - Handshaking communication controls
to enable data transfer between the host and the NIB.

RBD Address -The address of the Receive Buffer Descriptor.

193

TABLE D.2

Glossary/Data Dictionary (Concluded)

Read - The parallel port control specifying data is to be read from the

NIB.

Reset - Signal applied by the host to terminate activities, just prior

to initialization.

RFA Offset - The offset portion of the Receive Frame Area address.

RFD Address - The address of the Receive Frame Descriptor.

RSCERRS - The number of good frames discarded because there were no
resources to receive them, initialized to zero by the host, updated

by the 82586.

RUC - The opcode command to the 82586 Receive Unit in the System
Control Block.

S - Indicates when set that the 82586 Command Unit should be suspended
following execution of the current command.

SCB Address - The SCB base address.

SCB Base - The base portion of the System Control Block address.

SCB Offset - The offset portion of the System Control Block address.

SCP Address - The address of the 82586 System Configuration Pointer.

Start Address Of Data - The starting address in NIB memory of data to
be examined by the host.

Sysbus - The word size the 82586 will use for transfers (8 or 16 bits).

System Diagnostics - The process of checking the NIB for correct
operation.

TBD Address - The address of the Trasmit Buffer Descriptor.

Type Field - A user-defined data field, typically used to indicate the

type of data contained in a packet.

Write - The parallel port control specifying data is to be written to

the NIB.

1

194

p

Bibliography

Allan, 1982a. Allan, Roger. "Designer's Reference: A Guide to
Standards for Buses, LANs, Ergonomics," Electronic Design, 30 (26):
107-112 (December 23, 19 8 2)a.

Allan, 1982b. "Local Networks Broad Standards, Many
Implementations on the Way," Electronic Design, 30 (20): 87-101
(September 30, 1982)b.

Arthurs and Stuck, 1982. Arthurs, E. and B. W. Stuck. "A Theoretical
Performance Analysis of Polling and Carrier Sense Collision Detection
Comuunication Systems," Local Computer Networks, edited by P. C.
Ravasio, G. Hopkins, and N. Naffah. North-Holland Publishing Company,
1982.

Belden Corporation, 1983. 882 REV-2. Belden Electronics Wire and
Ca1)le. Product Catalog. Belden Corporation, Electronic Wire and Cable
Division, Richmond, IN, 1983.

Benken, 1984. Benken, Lt Richard P., Digital Design Engineer for the
FCDL LAN Interface. Personal Interviews and Notes. AFWAL/FIGD, Wright-
Patterson AFB 011, January 1983 through May 1984.

Blair and Shepherd, 1982. Blair, Gordon S. and Doug Shepherd. "A
Performance Comparison of Ethernet and the Cambridge Digital
Communication Ring," Computer Networks, 6 (2): 105-113 (1982).

Burskyin, 1982. Burskyin, Dave. "Special Report: Silicon Ousting
Software in Network Systems," Electronic Design, 30 (20): 73-82
(September 30, 1982).

Bux, 1981. Bux, Werner. "Local Area Subnetworks: A Performance
Comparison," IEEE Transactions on Communications, COM-29 (10): 1465-
1473 (October 1981).

Digital Equipment Corporation and others, 1980. Digital Equipment
Corporation, Intel Corporation, Xerox Corporation. The Ethernet: A
Local Area Network: Data Link Layer and Physical Layer Specifications.
Version 1.0, September 30, 1980.

Franta and Chlamtac, 1981. Franta, W. R. and Imrich Chlamtac. Local
Networks. Lexington: D. C. Heath and Company, 1981.

Gould, 1980. 303-000270-200. High-Speed Data Interface, Model 9131.
Technical Manual, Description of High-Speed Data Interface for SEL
Computers. Gould Electronics & Electrical Products, February, 1980.

195

Intel Corporation, 1982. 210783-001. The Complete VLSI Solution.
Description of 82586 and 82501 LAN Chip Set. Intel Corporation, Santa
Clara, CA, 1982.

Intel Corporation, 1983. 210891-002. 82586 Reference Manual. Local
Communications Controller Advance Information. Intel Corporation, Santa
Clara, CA, January 1983.

Kirchoff and others, 1983. Kirchoff, Lt Arlen J., Program Manger, in
cooperation with Luke R. Maki, Terry V. Christian, Karyl A. Adams, and
Richard P. Benken. Simulation Reauirements Specification Manned Combat
Station. Report to the Division Chief of the Flight Control Division.
Flight Control Development Laboratory, Air Force Wright Aeronautical

Laboratories, 8 September 1983.

Lam 1980. Lam, Simon S. "A Carrier Sense Multiple Access Protocol for
Local Networks," Computer Networks, 4 (1): 21-32 (February 1980).

Liu and others, 1982. Liu, Ming T., Wael Hilal, and Bernard H. Groomes.
"Performance Evaluation of Channel Access Protocols for Local Computer
Networks," Procedings of the 25th IEEE Computer Society International
Conference. 417-426. IEEE Computer Society Press, Los Angeles, Fall
1982.

Metcalfe and Boggs, 1976. Metcalfe, Robert M. and David R. Boggs.
"Ethernet: distributed Packet Switching for Local Computer Networks,"
Communications of the ACM, 19 (7): 395-404 (July 1976).

Reagan, 1983. Reagan, Philip H. Local Area Networks (Revised Edition).
San Francisco: California Systems Group, 1983.

Shacham and Hunt, 1982. Schacham, Nachum and V. Bruce Hunt.
"Performance Evaluation of the CSMA/CD (1-persistent) Channel-Access
Protocol in Common-Channel Local Networks," Local Computer Networks,
edited by P. C. Ravasio, G. Hopkins, and N. Naffah. North-Holland

Publishing Company, 1982.

Shoch and Hupp, 1980. Shoch, John F., and Jon A. Hupp. "Measured
Performance of an Ethernet Local Network," Communications of the ACM, 23

(12): 711-721 (December 1980).

Stallings, 1984a. Stallings, William. Local Networks An Introduction.
New York: Macmillan Publishing Company, 1984a.

Stallings, 1984b. . 'local Network Performance," IEEE
Communications Magazine, 22 (2): 27-36 (February 1984)b.

Stuck, 1983. Stuck, Bart W. "Calculating the Maximum Mean Data Rate in
Local Area Networks," Computer, 16 (5): 72-76 (May 1983).

196

* -- b- . ~ -. .- - -..- ,-.-.- . .

Tobagi, 1982. Tobagi, Fouad A. "Carrier Sense Multiple Access with
Message-Based Priority Functions," IEEE Transactions on Communications,

COM-30 (1): 185-200 (January 1982).

Tobagi and Hunt, 1980. Tobagi, F. A., and V. B. Hunt. "Performance
Analysis of Carrier Sense Multiple Access with Collision Detection,"
Computer Networks, 4 (5): 245-259 (October/November 1980).

Vo-Dai, 1982. Vo-dai, Thien. "Through-Delay Analysis of the Non
Slotted and Non Persistent CSMA-CD Protocol," Local Computer Networks,
edited by P. C. Ravasio, G. Hopkins, and N. Naffah. North-Holland
Publishing Company, 1982.

197

VITA

Mr. Luke R. Maki was born on 4 December 1955 in Akron, Ohio. He

graduated from high school in Cuyahoga Falls, Ohio, in 1973 and attended

the University of Akron from which he received the degree of Bachelor of

Science in Mechanical Engineering in June 1978. Upon graduation, he vs

* employed by the Air Force Flight Dynamics Laboratory, Wright-Patterson

Air Force Base, as a mechanical engineer to study the control of flight

simulator motion systems. Other duties included the operation of an

oculometer for the study of pilot eye scanning behavior, and coordina-

I ting simulator hardware modifications required for research simulation

projects. He maintained this position at the Flight Dynamics Laboratory

until entering the School of Engineering, Air Force Institute of Tech-

nology, in October 1982.

4 Permanent address: 3021 35th Avenue West

Seattle, Washington 98199

198

UNCLASSI FIED

SECURITY CLA"IFICAT ION OF THIS PAGE

REPORT DOCUMENTATION PAGE

iREPORT Sl, COP' Y CLA".IF 'CAlION 1b. RESTRICTIVE MARKINGS

2SECURITY CLA!SIFtCTiN AU1 HORIT Y' 3. DISTRIBUTION/AvAILABILITY OF REPORTA
___________________________________ Approved for public release;

2b. OECLASSIFIC:ATIUN,OOVNGFiADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS /E:, G/837S -3

63 NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If opplicable)

School of Enginee ring AFIT/ENG

6c. ADDRESS (City. State and ZIP Lodei 7b. ADDRESS (City, Stle and ZIP Code)

Air Force institute of TechnologyjWright-Patterson AFB, Ohio 45433

Bi. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Flight Control Division AFV!AL/FIGD

8c ADDRESS WCity. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Air Force Flight Dynamics Laboratory PROGRAM PROJECT TASK WORK UNIT

Wright-Patterson AFB, Ohio 45433 ELE ME NT NO. NO. NO. NO.

11 TITLE iIricluie Sec.urity Clas.sification) 62201IF 2403 01 38
SeeBox_19 ______________________

12 PERSONAL AUTHOR(S)

Luke R. iMai. B.S. . GS-12
13a. TYPE OF REPORT ~ 13b. TIME COVERED t1.DT FREOr(r.5fo.(a) fI. PAGE COUNT

*MS Thesis FRMTO ____I 198"i September I 207
16. SUPPLEMENTARY NOTATION

17 COSATI ICODES SB R 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUG.Local Area Networks, Ethernet, CSM.1A, CSMA/CD, Real-Time
09 02Flight Simulation, Network Performance
09 1 05 1

* 19. ABSTR.&CT (Continue on revers e if necessar-y and identify by block number)

Title: DESIGN AND SPECIFICATION OF A LOCAL AREA NETWORK ARCHITECTURE FOR USE IN
REAL-TIIME FLIGHT SIMULATION

*Thesis Chairman: Walter D. Seward, Major, USAF
Associate Professor of Electrical Engineering

20. DiSTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UCLASSIFIED/UNLIMITEO IRSAME AS RPT. CDTIC USERS C1 UNCLASSIFIED

22.NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL1Walter D. Seward, Major, USAF 532535 FVN
OD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGC

..UN,. IS .IFIE

SECURITY CLASSIF ICATION OF THIS PAGE

This investigation examined the use of a Local Area Network (LAN) in the real-time

environment of the Air Force Flight Dynamics Laboratory's Flight Control Development
Laboratory (FCD1.) flight simulation facility.

Using the requirements of the FCDL's Manned Combat Station (MCS) project as a
guideline, a LAN based on tile Ethernet protocol specification was identified as suitable
for use in the real-time flight simulation facility. Both the architecture and tile
performance of the Ethernet protocol were examined to make this conclusion. The
selection of the Intel 82586 Local Comunicatiotis Controller chip (which dcfaults to
the Ethernet specification), the in-house design and manufacture of a Network Interface

Board (NIB) using this chip, and the standard operating procedure for FCDL simulations

allowed a software design to be completed for the control of the NIB. A recommended
course of action for the FCDL is made for the eventual implementation of the proposed
-..' and software design.

I

UNCLASSI FIED

SECURITY CLASSIFICATION OF THIS PAGI

FILMED

I 5-85

* DTIC
-- - - - - -

